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Purpose: This document is a compilation of notes generated to prepare for the Basic Qualifying Exam. I

have documented some of my solutions so that I may not forget and repeat the frustrations of failing this

cursed exam again. Best of luck to anyone using these notes to prepare. Also see Brent Woodhouse’s study

guide. I do not guarantee accuracy of all the presented solutions.

This document is long and incomplete and I return on occasion to revise solutions and add solutions

I have not yet typeset. If the reader finds any typos or corrections to be made, feel free to email me

at heaton@math.ucla.edu and I will address these and post an updated set of notes to my webpage

math.ucla.edu/~heaton/.
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1 Introduction

This document provides several previous exam solutions along with some random notes on different topics

related to the exam.

2 Analysis

Remark: The following material is useful for learning about completeness:

i) Baby Rudin: pg. 54-55, 150-151

ii) Rosenclicht: pg. 52-53

iii) Kreyszig: pg. 28-39

iv) Tao I: pg: 146-147

v) Tao II: pg. 19-20

vi) Fitzpatrick: 322-323

4

Definition: Let (an)∞n=m be a sequence of real numbers and x ∈ R. Then x is a limit point of (an)∞n=m if,

for every ε > 0 and every N ≥ m, there exists an n ≥ N such that |an − x| ≤ ε. 4

Definition: Let (an)∞n=m be a sequence of real number and L ∈ R. Then (an)∞n=m converges to L if, given

any real ε > 0, one can find an N ≥ m such that |an − L| ≤ ε ∀ n ≥ N . 4

Definition: A sequence (an)∞n=m is a Cauchy sequence iff for every ε > 0, there exists an N ≥ 0 such

that d(aj , ak) ≤ ε ∀ j, k ≥ N . 4

Definition: Let (an)∞n=m and (bn)∞n=m be sequences in R. Then (bn)∞n=m is a subsequence of (an)∞n=m iff

there exists a function f : N→ N that is strictly increasing such that bn = af(n) ∀ n ∈ N. 4
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Definition: Let X ⊆ R, f : X → R be a function, and x0 ∈ X. Then the following statements are

equivalent:

i) f is continuous at x0.

ii) For every sequence (an)∞n=m in X with lim
n→∞

an = x0, we have lim
n→∞

f(an) = f(x0).

iii) For every ε > 0, there exists δ > 0 such that |f(x)− f(x0)| < ε for all x ∈ X with |x− x0| < δ.

iv) For every ε > 0, there exists δ > 0 such that |f(x)− f(x0)| ≤ ε for all x ∈ X with |x− x0| ≤ δ.

We say that f is continuous if f is continuous at every x0 ∈ X. 4

Definition: The Archimedean property states that whenever x, ε ∈ R are positive, there exists M ∈ N
such that Mε > x. 4

Proposition: f : X → Y is continuous at x iff whenever {xn} → x, {f(xn)} → f(x). 4

Proof:

Let {xn} be a sequence in X that converges to x and ε > 0 be given. Let us also assume f is

continuous. Then we must find N ∈ N such that for all n ≥ N , d(f(xn), f(x)) < ε. By continuity

of f , there exists δ > 0 such that whenever d(xn, x) < δ, d(f(xn), f(x)) < ε. Since {xn} → x, there

is a N ∈ N such that d(xn, x) < δ for all n ≥ N . Then whenever n ≥ N , d(f(xn), f(x)) < ε.

Conversely, suppose that {f(xn)} → f(x). We must show that this implies f is continuous at x,

i.e., that there is a δ > 0 such that whenever y ∈ X and d(x, y) < δ, d(f(x), f(y)) < ε. Suppose no

such δ exists. Then, letting δ = 1/n for n ∈ N, we can identify xn ∈ X so that d(f(x), f(xn)) > ε

while d(x, xn) < δ = 1/n. This gives a sequence {xn} that converges to x while {f(xn)} does not

converge to f(x), which contradicts our initial assumption. Hence f must be continuous. �

Definition: A homeomorphism is a bijection f : X → Y such that f and f−1 are continuous. 4

Proposition: A function f : X → Y is continuous iff for every open subset V ⊆ Y , f−1(V ) is open in X. 4
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Remark: If the topologies X and Y are generated by basic open sets, the above is equivalent to say,

for every basic open neighborhood Ny of f(x0), there is a basic open neighborhood Nx of x0 such that

f(Nx) ⊆ Ny. In particular, if X and Y are metric spaces, then f is continuous at x0 iff ∀ ε > 0, ∃ δ > 0

such that x ∈ B(x0, δ)⇒ f(x0) ∈ B(f(x0), ε). 4

If f : [a, b]→ R is continuous, then f [a, b]→ R is uniformly continuous. 4

Proof:

Let ε > 0 be given. We must show there is δ > 0 such that for x, y ∈ [a, b] we have |f(x)−f(y)| < ε

whenever |x − y| < δ. By the continuity of f , for each x ∈ [a, b] there exists δx > 0 such that

y ∈ (x−2δx, x+2δx) implies |f(x)−f(y)| < ε/2. Also, the collection of (x−δx, x+δx) for x ∈ [a, b]

form an open cover of [a, b]. But, [a, b] is closed and bounded and, therefore, compact. This implies

there is a finite subcover of x1, . . . , xn ∈ [a, b] such that

[a, b] ⊆
n⋃
i=1

(xi − δxi , xi + δxi).

Then define δ = min{δx1 , . . . , δxn} and suppose x, y ∈ [a, b] such that |x− y| < δ. Since we have a

finite cover, there is xi with i ∈ {1, . . . , n} such that |x− xi| ≤ δxi . This implies

|y − xi| ≤ |y − x|+ |x− xi| < δ + δxi ≤ 2δxi .

Hence |f(xi) − f(x)| < ε/2 and |f(xi) − f(y)| < ε/2. From the triangle inequality, it follows that

|f(x)− f(y)| < ε. Hence f is uniformly continuous. �

Intermediate Value Theorem: Let f : X → R be continuous and suppose X is connected. Then if f

takes on values y0 and y1 (with y0 < y1), then f takes on every value between them, i.e., ∀ y ∈ (y0, y1) ∃ x ∈
X such that f(x) = y. 4

Proof:

Suppose x0, x1 ∈ X such that f(x0) = y0 and f(x1) = y1. Then fix any y ∈ (y0, y1), and let

A0 = {x ∈ X | f(x) < y} = f−1(−∞, y) and A1 = {x ∈ X | f(x) > y} = f−1(y,∞). Both sets

are open since f is continuous and since (y,∞) and (−∞, y) are open. Both sets are nonempty

since x0 ∈ A0 and x1 ∈ A1. Also, A0 ∩ A1 = ∅ since we cannot simultaneously have f(x) > y and

f(x) < y. Since X is connected, we cannot have X = A0 ∪ A1. Otherwise, X would be disjoint.

Thus, there must exists x ∈ X − (A0 ∪ A1), which implies there exists x ∈ X such that f(x) = y

and we are done. �

3 Last Modified: 4/18/2017



Basic Qual Notes Heaton

Definition: Let X ⊆ R and f : X → R be a function. Then f is uniformly continuous if for every

ε > 0, there exists δ > 0 such that |f(x)− f(x0)| ≤ ε whenever x, x0 ∈ X with |x− x0| ≤ δ. 4

Note: For uniform continuity one can take a single δ which works for all x0 ∈ X while for ordinary continuity

each x0 ∈ X may use a different δ. Hence a uniformly continuous function is continuous, but not conversely.

Let (X, d) be a compact metric space and (Y, ρ) be a metric space. If f : X → Y is continuous, then f is

uniformly continuous 4

Proof:

Let ε > 0 be given. By the continuity of f , for each x ∈ X there exists δx > 0 such that y ∈ B(x, δx)

implies f(y) ∈ B(f(x), ε/2). The collection of balls ∪x∈XB(x, δx/2) form an open cover for X.

Since X is compact, it follows that there is a finite subcover ∪ni=1B(xi, δxi/2) of X. Then define

δ = min{δxi/2 | 1 ≤ i ≤ n}. Now suppose we have d(x, y) < δ. Since ∪ni=1B(xi, δxi/2) covers X,

there is an index j such that x ∈ B(xj , δxj/2). Then d(xj , y) ≤ d(xj , x) + d(x, y) ≤ δxj/2 + δ ≤ δxj .
Hence x, y ∈ B(xj , δxj ), which implies

ρ(f(x), f(y)) ≤ ρ(f(x), f(xj)) + ρ(f(xj), f(y)) < ε/2 + ε/2 = ε.

Hence f is uniformly continuous. �

Definition: Let X,Y be metric spaces and f : E → Y be continuous with E ⊆ X. If a ∈ X and E − {a}
has points arbitrarily close to a, we see the limit lim

x→a,x∈E
f(x) exists and is equal to L iff ∀ ε > 0, ∃ δ > 0

such that x ∈ E − {a} and d(x, a) < δ implies d(f(x), L) < ε. 4

Example: Define fn : [0, 1] → [0, 1] by f(x) = xn. Let f(x) = 0 if x ∈ [0, 1) and f(x) = 1 if x = 1. Then

{fn} → f . 4
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Remark: The above example shows that limits of continuous functions need not be continuous. Indeed,

in the above we see

lim
x→1

lim
n→∞

fn(x) = lim
x→1

f(x) = 0 6= 1 = lim
n→∞

lim
x→1

fn(x). (1)

4

Definition: Let X,Y be metric spaces, {fn : X → Y }∞n=1 be a sequence of functions, and f : X → Y . Then

{fn} converges pointwise to f on X if ∀ x ∈ X, lim
n→∞

fn(x) = f(x). That is, ∀ x ∈ X, ε > 0, ∃ N ∈ N,

such that ∀ n ≥ N , |fn(x)− f(x)| < ε. 4

Definition: Let X,Y be metric spaces, {fn : X → Y }∞n=1 be a sequence of functions, and f : X → Y . Then

{fn} converges uniformly to f on X iff ∀ ε > 0, ∃ N ∈ N such that ∀ x, n ≥ N, d(f(x), fn(x)) < ε. 4

Definition: For metric spaces X and Y , a function f : X → Y is Lipschitz with constant L if ∀ x, y ∈ X,

d(f(x), f(y)) < Ld(x, y). 4

Proposition: Lipschitz functions are continuous. 4

Proof:

For metric spaces X and Y , define f : X → Y to be Lipschitz with constant L. Let ε > 0 be given

and x0 ∈ X. For x ∈ X it follows that d(x, x0) < ε/L implies d(f(x), f(x0)) ≤ Ld(x, x0) < ε. So,

at each x0 ∈ X, f is continuous. Thus, f is continuous and we are done. �

Monotone Convergence Theorem: A monotone sequence converges if and only if it is bounded. More-

over, the bounded monotone sequence {an} converges to sup{an | n ∈ N} if it is monotonically increase

and inf{an | n ∈ N} if it is monotonically decreasing. 4

Proof:

Suppose {an} is a convergent sequence. We first show that this sequence is bounded. Let a denote

the limit of {an}. Taking ε = 1, it follows from the definition of convergence that this is N ∈ N
such that |an − a| < 1 whenever n ≥ N . Using the triangle inequality, |an| = |(an − a) + a| ≤
|an − a| + a ≤ 1 + |a| whenever n ≥ N . Then define M = max{|a1|, . . . , |aN−1|, |a| + 1}. Then

|an| ≤M for each n ∈ N and so {an} is bounded.
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Now let {an} be an unbounded monotone sequence. Further suppose that it is monotonically in-

creasing. Then for each positive M ∈ R we can find an such that an ≥M . But, since the sequence

is increasing, an ≥ aN > M for all N , which reveals xn → ∞ as n → ∞. Similar argument holds

for a monotonically decreasing sequence using negative M ∈ R.

All that remains it to show that a monotone sequence converges to its supremum if it is increasing

and its infimum if it is decreasing. First suppose {an} is a monotonically increasing sequence. Let

a = sup{an | n ∈ N} and ε > 0 be given. We must find N ∈ N such that |an − a| ≤ ε for all

n ≥ N . By the definition of a, we have an ≤ a < a + ε for all n ∈ N. Since a is the least upper

bound for a, a− ε is not an upper bound for a, which implies there is N ∈ N such that a− ε < aN .

Then a− ε < aN ≤ an < a+ ε for all n ≥ N . This shows |an − a| < ε whenever n ≥ N , as desired.

The case where {an} is decreasing follows similarly. �

Heine-Borel Theorem 1: Let (X, d) be a metric space. Then a subset Y ⊆ X is compact iff it is

complete and totally bounded. 4

Heine-Borel Theorem 2: Let (Rn, d) be a Euclidean space with either the Euclidean metric, the taxicab

metric, or the sup norm metric. Let E ⊆ Rn. Then E is compact iff E is closed and bounded. 4

Bolzano-Weierstrass Theorem in Rn (aka Sequential Compactness Theorem): A bounded subset of

S ⊆ Rn is sequentially compact iff it is closed and bounded. 4

Proof:

We first show that every sequence {xn}∞n=1 ⊂ R has a monotone subsequence. Let us call an integer

n a “peak” of the sequence if m > n implies that xn > xm, i.e., xn is greater than every subsequent

term in the sequence. Now suppose {xn}∞n=1 has infinitely many peaks, n1 < n2 < · · · < nj < · · · .
Then the subsequence corresponding to these peaks {xnj} is monotonically decreasing. Alterna-

tively, suppose {xn}∞n=1 has only finitely many peaks. Let N be the last peak and n1 = N + 1.

Then n1 is not a peak since n1 > N , which implies there exists n2 > n1 with xn2 ≥ xn1 . Again

n2 > N is not a peak, and so, by induction, we construct an infinite non-decreasing subsequence

xn1 ≤ xn2 ≤ xn3 ≤ · · · , as desired.

Now suppose {xn}∞n=1 is bounded. Then, by the above, there exists a monotone subsequence. Then

by the Monotone Convergence Theorem, that subsequence must converge.

(continued on next page)
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The case for Rn follows from the n = 1 case through application of a diagonalization argument.

Given a bounded sequence in Rn, the sequence of first coordinates is a bounded real sequence and,

thus, has a convergent subsequence. Then from this subsequence we can extract a subsubsequence

on which the second coordinates converge, and so on, until we have passed from the original

subsequence n times, which is still a subsequence of the original sequence. On this final subsequence,

each coordinate sequence converges. Hence this subsequence converges. �

The Boundedness Theorem: A continuous function on a closed bounded interval is bounded. 4

Proof:

By way of contradiction, suppose a continuous function on the closed bounded interval [a, b] ⊂ R
is not bounded. Then, for each n ∈ N, there is xn ∈ [a, b] such that f(xn) > n. This defines

a sequence {xn}∞n=1. Because [a, b] is bounded, the Bolzano-Weierstrass Theorem implies there

exists a convergent subsequences {xnk}∞k=1, whose limit shall be denoted by x. Since [a, b] is closed,

x ∈ [a, b]. Since f is continuous at x, it follows that {f(xnk)}∞k=1 converges to the finite value f(x).

But, since f(xnk) > nk ≥ k for each k ∈ N, it must follow that {f(xnk)} → ∞ as k → ∞ and

so this subsequence does not converge to the finite value f(x), a contradiction. Therefore, f is

bounded above on [a, b]. The proof that f is bounded below follows similarly. �

The Extreme Value Theorem: If f : [a, b] → R is continuous, then f must attain a maximum and a

minimum. 4

Proof:

By the boundedness theorem, f is bounded above. By the Dedekind-completeness of R, there is a

supremum M of f . We must show there exists c ∈ [a, b] such that f(c) = M . Let n ∈ N. Then since

M is the least upper bound, M − 1/n is not an upper bound for f . Thus, there exists cn ∈ [a, b]

such that M − 1/n < f(cn). This defines a sequence {cn}∞n=1. Since M is an upper bound for f ,

we have M − 1/n < f(cn) ≤M for all n ∈ N. Now let ε > 0 be given. Then, by the Archimedean

property of R, there is N ∈ N such that 1/N ≤ ε. Thus, |f(cn)−M | ≤ 1/n ≤ ε whenever n ≥ N

and so {f(cn)}∞n=1 converges to M .

The Bolzano-Weierstrass Theorem implies there is a subsequence {cnk}∞k=1 that converges to some

c. Since [a, b] is closed, c ∈ [a, b]. Since f is continuous at c, {f(cnk)}∞k=1 converges to f(c). But,

{f(cnk)}∞k=1 is a subsequence of {f(cn)}∞n=1 that converges to M . Hence M = f(c) and f attains

its supremum M at c. Similar proof shows that f attains is infimum. �
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Arzela-Ascoli Theorem: Let {fn}∞n=1 be a sequence of functions fn : [a, b] → R. If this sequence is

uniformly bounded and equicontinuous, then there is a subsequence {fnk}∞k=1 that converges uniformly.

Conversely, if every subsequence of {fn}∞n=1 itself has a uniformly convergent subsequence, then {fn}∞n=1

is uniformly bounded and equicontinuous. 4

Proof:

(⇒) Let {fn} be a sequence in F . Given ε > 0, we must show there exists N ∈ N such that

∀ t ∈ [0, 1], |fn(t)− fm(t)| ≤ ε whenever n,m ≥ N.

We proceed using a diagonalization argument. Let σ : N → Q ∩ [0, 1] be an enumeration

of the rationals on [0, 1]. Then {fn(σ(1))} is a sequence of rationals. Moreover, because

F is uniformly bounded by some M > 0, for each n ∈ N we have fn(σ(1)) ∈ [−M,M ]. The

Bolzano Weierstrass Theorem implies that there is a convergent subsequence {fn1(j)(σ(1))}∞j=1.

Similarly, we can find a subsequence {fn2(j)} of {fn1(j)} such that {fn2(j)(σ(2))} converges.

Continuing in an inductive fashion, for each k ∈ N we can find a subsequence nk+1(j) of nk(j)

such that {fnk+1(j)(σ(k))} converges. In fact, by this construction, {fnk+1(j)(σ(m))} converges

for each m = 1, . . . , k + 1.

Now define a new sequence m(j) by m(j) = nj(j). We claim {fm(j)(σ(k))} converges for each

k ∈ N. Indeed, given k ∈ N, there are only finitely many terms in the sequence {fm(j)(σ(k))}
that are not in {fnk(j)(σ(k))}, namely, the k − 1 terms

fnk(1)(σ(k)), . . . , fnk(k−1)(σ(k)).

Thus, in the limit as k →∞, we have that {fm(j)(σ(k))} converges to the limit of {fnk(j)(σ(k))}.
Since this k was arbitrarily chosen, this holds for all k ∈ N. Hence {fm(j)(r)} converges and

is Cauchy for each r ∈ [0, 1] ∩Q.

Now, because F is equicontinuous, there is a δ > 0 such that for all n ∈ N and x, y ∈ [0, 1],

|x− y| ≤ δ ⇒ |fn(x)− fn(y) ≤ ε/3.

The collection of B(x, δ/2) form an open cover of [0, 1]. However, [0, 1] is closed and bounded.

By the Heine-Borel theorem, it follows that [0, 1] is compact. Thus, there is a finite subcover

of [0, 1] by some collection ∪Jj=1B(xj , δ/2). Since the rationals are dense, there exists r1, . . . , rJ
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with rj ∈ B(xj , δ/2). And, from the above, for each ri, there exists Ni such that

|fm(j)(ri)− fm(k)(ri)| ≤
ε

3
whenever j, k ≥ Ni.

Let N = max{Ni | 1 ≤ i ≤ J}. For each t ∈ [0, 1], it follows that there exists ` such that

t ∈ B(x`, δ/2). Thus,

|r` − t| ≤ |r` − x`|+ |x` + t| ≤ δ/2 + δ/2 = δ.

For j, k ≥ N this implies that for each t ∈ [0, 1]

|fm(j)(t)− fm(k)(t)| ≤ |fm(j)(t)− fm(j)(r`)|+ |fm(j)(r`)− fm(k)(r`)|+ |fm(k)(r`)− fm(k)(t)|

≤ ε/3 + ε/3 + ε/3

= ε.

Hence {fm(j)} is uniformly Cauchy and every sequence {fn} has a uniformly convergent sub-

sequence.

(⇐) I omit the proof of the converse. �

Summation by Parts: Given two sequences {an} and {bn}, define An =
∑n

k=0 ak for n ≥ 0 and put

A−1 = 0. Then, if 0 ≤ p ≤ q, we have

q∑
n=p

anbn =

q−1∑
n=p

An(bn − bn+1) +Aqbq −Ap−1bp.

4

Suppose the partial sums
∑

n an form a bounded sequence and that {bn} is a nonnegative monotonically

decreasing sequence with lim
n→∞

bn = 0. Then
∑

n anbn converges. 4

Proof:

Choose M such that An =
∑n

k=0 ak is bounded above by M for all n. Given ε > 0, there is an
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integer N such that bN ≤ (ε/2M). For N ≤ p ≤ q, we have∣∣∣∣∣
q∑

n=p

anbn

∣∣∣∣∣ =

∣∣∣∣∣
q−1∑
n=p

An(bn − bn+1) +Aqbq −Ap−1bp

∣∣∣∣∣
≤M

∣∣∣∣∣
q∑

n=p

(bn − bn+1) + bq + bp

∣∣∣∣∣
= 2Mbp

≤ 2MbN

≤ ε.

Convergence now follows from the Cauchy criterion. We note that the first inequality in the above

chain depends on the fact that bn − bn+1 ≥ 0. �

2.1 Differentiation

Definition: Let f : X → R be a function and x0 ∈ X. Then f attains a local maximum at x0 iff there

exists δ > 0 such that the restriction of f to X ∩ (x0 − δ, x0 + δ) attains a maximum at x0. Similarly, f

attains a local minimum at x0 iff there exists δ > 0 such that the restrction of f to X ∩ (x0 − δ, x0 + δ)

attains a minimum at x0. 4

Definition: Let X ⊆ R, x0 ∈ X be a limit point of X, and f : X → R be a function. If the limit

lim
x→x0;x∈X−{x0}

f(x)− f(x0)

x− x0
(2)

converges to some L ∈ R, then we say f is differentiable at x0 on X with derivative L, and write

f ′(x0) = L. 4

Rolle’s Theorem: Let f : [a, b] → R be a function which is continuous on [a, b] and differentiable on

(a, b). Suppose also that f(a) = f(b). Then there exists x0 ∈ (a, b) such that f ′(x0) = 0. 4

Proof:

Since f : [a, b] → R is continuous, according to the Extreme Value Theorem, it attains both a

minimum and maximum on [a, b]. If the maximizers and minimizers occur at the endpoints, then

f : [a, b] → R is constant and so f ′(x) = 0 for all x ∈ (a, b). Otherwise, the function has either a
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maximizer or a minimizer at some point x0 ∈ (a, b). First suppose that f has a maximizer at x0.

Then, using the definition of the derivative,

lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0).

Then for x < x0 we have
f(x)− f(x0)

x− x0
≥ 0

and for x > x0
f(x)− f(x0)

x− x0
≤ 0.

Hence

0 ≤ lim
x→x0

f(x)− f(x0)

x− x0
≤ 0

and so f ′(x0) = 0. Similar argument applies if x0 is a minimizer, but with the inequalities reversed.

This completes the proof. �

Mean Value Theorem: Let f : [a, b] → R be a function which is continuous on [a, b] and differentiable

on (a, b). Then there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
. (3)

4

Proof:

Define g : [a, b] → R by g(x) = f(x)−mx for some constant m ∈ R. Note that g is differentiable

since f is differentiable and so also is mx. We seek to apply Rolle’s Theorem, which requires

g(b) = g(a). Then note

g(a) = g(b) ⇔ f(a)−ma = f(b)−mb ⇔ m(b− a) = f(b)− f(a) ⇔ m =
f(b)− f(a)

b− a
.

Then by Rolle’s theorem there is c ∈ (a, b) such that g′(c) = 0. Thus, g′(c) = f ′(c)−m = 0, which

implies the desired relation, i.e.,

f ′(c) =
f(b)− f(a)

b− a
.

�
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2.2 Fixed Point Methods

Definition: For metric spaces X and Y , a function f : X → Y is a contraction if it is Lipschitz with

constant L < 1. 4

Banach Fixed Point Theorem: Let (X, d) be a non-empty complete metric space with the contraction

mapping T : X → X. Then T admits a unique fixed-point x∗ ∈ X, i.e., T (x∗) = x∗. Moreover, for

arbitrary x0 ∈ X, defining {xn} by xn+1 = T (xn) converges to x∗. 4

Proof:

First we will show that such an x∗ exists. Let x0 ∈ X. Then define xn+1 = f(xn) and note this

implies

d(xn+2, xn+1) = d(f(xn+1), f(xn)) ≤ Ld(xn+1, xn).

Thus, by induction, d(xn+1, xn) ≤ Lnd(x1, x0). Then for m > n we have

d(xm, xn) ≤ d(xn, xn+1) + · · ·+ d(xm−1, xm)

≤
m−1∑
i=n

Lid(x0, x1)

≤ Ln · d(x0, x1) · 1

1− L
.

However, because L < 1, we see Ln ·d(x0, x1)/(1−L) −→ 0 as n −→∞, and so, by the comparison

lemma, {xn}∞n=1 is Cauchy. Since X is complete, it follows that {xn}∞n=1 has a limit in X, which

we denote by x∗. Then

x∗ = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
= f(x∗)

where we can bring the limit into the argument of f since f is Lipschitz and, therefore, continuous.

Thus, x∗ = f(x∗).

All that remains is to show uniqueness of x∗. Suppose also we have y∗ ∈ X such that f(y∗) = y∗.

If d(x∗, y∗) > 0, then, using the fact that L < 1,

d(x∗, y∗) = d(f(x∗), f(y∗)) ≤ Ld(x∗, y∗) < d(x∗, y∗).

But, d(x∗, y∗) < d(x∗, y∗) is a contradiction. Hence d(x∗, y∗) = 0 and so x∗ = y∗. Hence the fixed

point must be unique. �
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2.3 Integration

Definition: Let a, b ∈ R with a < b. A partition of the closed interval [a, b] is a finite sequence of numbers

x0, . . . , xN such that a = x0 < x1 < · · · < xN = b. The width of the partition is defined to be

width := max{xi − xi−1 | i = 1, 2, . . . , N}.

4

Definition: Let f : [a, b] → R and x0, . . . , xN be a partition of [a, b]. Then a Riemann sum for f

corresponding to the given partition is given by

N∑
i=1

f(x′i)(xi − xi−1)

where xi−1 ≤ x′i ≤ xi for each i = 1, . . . , N . 4

Definition: We define the upper and lower Riemann sums, respectively, of f with respect to a partition

P = {I1, . . . , In} of a bounded interval [a, b] by

U(f ;P ) =
n∑
k=1

(
sup
Ik

f

)
|Ik| and L(f ;P ) =

n∑
k=1

(
inf
Ik
f

)
|Ik|. (4)

Let Π denote the collection of all partitions of I. We define the upper and lower Riemann integrals of f

on I by

U(f) = inf
P∈Π

U(f ;P ) and L(f) = sup
P∈Π

U(f ;P ). (5)

4

Remark: One way to define Riemann integrability is as follows. A bounded function f : I → R defined

on a bounded interval [a, b] is Riemann integrable on [a, b] if its upper integral U(f) and lower integral

L(f) are equal. Below is a more concise definition of Riemann integrable 4
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Definition: Let a, b ∈ R with a < b and let f : [a, b] → R. We say that f is Riemann integrable on

[a, b] if there exists A ∈ R such that, for any ε > 0, there is a δ > 0 such that |S − A| < ε whenever S is

a Riemann sum for f corresponding to any partition of [a, b] of width less than δ. In this case, A is called

the Riemann integral of f between a and b and is denoted by
∫ b
a f(x) dx. 4

Lemma: A function f : [a, b]→ R is Riemann integrable on [a, b] iff, given ε > 0, there exists δ > 0 such

that |S1 − S2| < ε whenever S1 and S2 are Riemann sums for f corresponding to partitions of [a, b] of

width less than δ. 4

Change of variables theorem: Let U, V be open intervals inR, φ : U → V be continuously differentiable,

and f : V → R be continuous. Then for any a, b ∈ U∫ φ(b)

φ(a)
f(v) dv =

∫ b

a
f(φ(u))φ′(u) du.

4

Proof:

Let F : V → R be defined by F (y) =
∫ y
φ(a) f(v) dv for all y ∈ V . Then F is differentiable and

F ′ = f . The function G : U → R defined by

G(x) =

∫ φ(x)

φ(a)
f(v) dv (6)

is the composition G = F ◦ φ of two differentiable functions and, thus, is differentiable itself. By

the chain rule, G′(x) = F ′(φ(x))φ′(x) = f(φ(x))φ′(x) for all x ∈ U . Hence we may write

G(x) =

∫ x

a
f(φ(u))φ′(u)du+ c (7)

for some c ∈ R. Equation (6) implies G(a) = 0, and so c = 0. Then taking x = b, we may equate

the right hand sides of (6) and (7) to obtain the desired relation.

�

14 Last Modified: 4/18/2017



Basic Qual Notes Heaton

First Fundamental Theorem of Calculus: Let f : [a, b]→ R be continuous and define F : [a, b]→ R

by

F (x) =

∫ x

a
f(t) dt.

Then F is uniformly continuous on [a, b], differentiable on (a, b), and F ′(x) = f(x) for all x ∈ (a, b). 4

Second Fundamental Theorem of Calculus: Let f [a, b] → R and F [a, b] → R be such that F is

differentiable and F ′(x) = f(x) for all x ∈ (a, b). If f is Riemann integrable on [a, b], then∫ b

a
f(x) dx = F (b)− F (a).

4

Mean Value Theorem for Integrals: Suppose the function f : [a, b] → R is continuous. Then there

exists x0 ∈ [a, b] at which ∫ b

a
f = f(x0) · (b− a).

4

Cauchy Mean Value Theorem: Suppose f [a, b] → R and g : [a, b] → R are continuous and that their

restrictions to the open interval (a, b) are differentiable and that g′(x) 6= 0 for all x ∈ (a, b). Then there is

a point x0 ∈ (a, b) at which
f(b)− f(a)

g(b)− g(a)
=
f ′(x0)

g′(x0)
.

4
Archimedes-Riemann Theorem: Let f : [a, b] → R be a bounded function. Then f is Riemann

integrable on [a, b] iff there is a sequence of partitions {Pn} of the interval [a, b] such that

lim
n→∞

[U(f, Pn)− L(f, Pn)] = 0.

Moreover, for such a sequence of partitions,

lim
n→∞

L(f, Pn) = lim
n→∞

U(f, Pn) =

∫ b

a
f.
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4

First Fundamental Theorem of Calculus: Let f : [a, b]→ R be Riemann integrable. Let F : [a, b]→ R

be the function

F (x) :=

∫
[a,x]

f. (8)

Then F is continuous. Also, if x0 ∈ [a, b] and f is continuous at x0, then F is differentiable at x0 and

F ′(x0) = f(x0). 4

Second Fundamental Theorem of Calculus: Let f : [a, b]→ R be Riemann integrable. If F : [a, b]→
R is an antiderivative of f , then ∫

[a,b]
f = F (b)− F (a). (9)

4

Definition: Let E ⊆ R and f : E → R be a function. If a is an interior point of E, we say that f is

real analytic at a if there exists an open interval (a − r, a + r) in E for some r > 0 such that there

exists a power series centered at a which has a radius of convergence greater than or equal to r, and which

converges to f on (a− r, a+ r). If E is an open set, and f is real analytic at every point a of E, then f is

real analytic on E. 4

Sequences and series of functions

Definition: Let (f (n))∞n=1 be a sequence of functions from one metric space (X, dX) to another (Y, dy), and

let f : X → Y be another function. We say that (f (n))∞n=1 converges pointwise to f on X if we have

lim
n→∞

f (n)(x) = f(x) (10)

for all x ∈ X, i.e.,

lim
n→∞

dY (f (n)(x), f(x)) = 0. (11)

4

Definition: Let (f (n))∞n=1 be a sequence of functions from one metric space (X, dX) to another (Y, dY ), and

let f : X → Y be another function. Then (f (n))∞n=1 converges uniformly to f on X if for every ε > 0

there exists N > 0 such that dY (f (n)(x), f(x)) < ε for every n > N and x ∈ X. The function f is the

uniform limit of the functions f (n). 4
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Uniform convergence and integration

Leibniz differentiation under the integral sign: Let f(x, t) be a function such that both f(x, t)

and its partial derivative fx(x, t) are continuous in t and x in some region of the (x, t)-plane, including

a(x) ≤ t ≤ b(x), x0 ≤ x ≤ x1. Also suppose that the functions a(x) and b(x) are both continuous and

both have continuous derivatives for x0 ≤ x ≤ x1. Then for x0 ≤ x ≤ x1 we have

d

dx

(∫ b(x)

a(x)
f(x, t) dt

)
= f(x, b(x)) · b′(x)− f(x, a(x)) · a′(x) +

∫ b(x)

a(x)

∂f

∂x
(x, t) dt.

4
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2.4 Metric Space Topology and Analysis

Definition: An order (L,<) is Dedekind complete if the following two conditions hold:

i) Every A ⊆ L which is bounded above has a supremum in L, mean a <-least element z ∈ L such that

x ∈ A ⇒ x ≤ z.

ii) Every A ⊆ L which is bounded below has an infimum in L, meaning a <-greatest element z ∈ L such

that x ∈ A ⇒ z ≤ x.

4

Proposition: R is Dedekind complete.

Proof:

Let A ⊆ R be nonempty and bounded above, and let A′ = {x | ∃ y ∈ A, x ≤ y}. Indeed, every

upper bound for A is also an upper bound for A′, and vice versa. To show that A contains a

supremum in R, it then suffices to find the supremum of A′. If A′ has a largest element, this

element forms the supremum and we are done. Now suppose otherwise. Let f : N → Q be a

bijection, and for each n ∈ N let an = max{f(i) ∈ A′ | 1 ≤ i ≤ n}. Then {an}∞n=1 is nonstrictly

increasing. And, the sequence does not have a largest element due to the density of Q and the

fact that A′ does not have a largest element. We may choose a subsequence {a′n}∞n=1 of {an}∞n=1,

which is strictly increasing. Using this, and the fact that A′ is bounded, we see [a′n] ∈ R. And [a′n]

provides an upper bound for A′. Hence we have found our supremum. The proof for the infimum

follows similarly. (I am not sure about this proof. Seems to be lacking a couple details.) �

Definition: Any bijection between ordered sets A and B is an equivalence relation if it is symmetric,

reflexive, and transitive. 4

Definition: A metric space (X, d) is a space X of objects, together with a metric d : X ×X → [0,+∞)

for which the following four axioms also hold:

a) For any x ∈ X, d(x, x) = 0.

b) (Positivity) For any distinct x, y ∈ X, d(x, y) > 0.

c) (Symmetry) For any x, y ∈ X, d(x, y) = d(y, x).

d) (Triangle Inequality) For any x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).
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4

Definition: Let (X, d) be a metric space. All points and sets mentioned below are understood to be

elements and subsets of X.

i) A neighborhood of p is a set consisting of all q such that d(p, q) < r, for some r > 0. The number

r is called the radius of this set.

ii) A point p is a limit point of the set E if every neighborhood of p contains a point q 6= p such that

q ∈ E.

iii) If p ∈ E and p is not a limit point of E, then p is called an isolated point of E.

iv) E is closed if every limit point of E is a point of E.

v) A point p is an interior point of E if there is a neighborhood N of p such that N ⊂ E.

vi) E is open if every point of E is an interior point of E.

vii) The complement of E, denoted Ec, is the set of all points p ∈ X such that p /∈ E.

viii) E is perfect if E is closed and if every point of E is a limit point of E.

ix) E is bounded if there is a real number M and a point q ∈ X such that d(p, q) < M for all p ∈ E.

x) E is dense in X if every point of X is a limit point of E, or a point of E (or both).

4

Definition: Let (X, d) be a metric space, x ∈ X, and r > 0. We define the ball BX,d(x0, r) in X, centered

at x0, and with radius r, in the metric d, to be the set

B(X,d)(x0, r) := {x ∈ X | d(x, x0) < r}. (12)

4

Every neighborhood is an open set. 4

Proof:

Consider a neighborhood E = B(p, r), and let q ∈ E. Then there exists a positive real number h

such that d(p, q) = r−h. For all points s such that d(q, s) < h, we have d(p, s) ≤ d(p, q) +d(q, s) <

r − h+ h = r, and so s ∈ E. Thus, q is an interior point of E. �
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If p is a limit point of a set E, then every neighborhood of p contains infinitely many points of E. 4

Proof:

Suppose there is a neighborhood N of p which contains only a finite number of points of E. Let

q1, . . . , qn denote these points ofN∩E, which are distinct from p. Then define r := min1≤m≤n d(p, qm),

which is positive due to the fact that d(p, qm) > 0 whenever qm and p are distinct. Then the neigh-

borhood Nr(p) contains no point q of E such that q 6= p, which implies p is not a limit point of E.

This contradicts our hypothesis and so the theorem follows. �

Definition: Let (X, d) be a metric space. Then X is totally bounded iff for every ε > 0 there exists a

finite set of points x1, . . . , xn ∈ X such that X = ∪ni=1Bε(xi). 4

The metric space (X, d) is sequentially compact iff it is compact. 4

Proof:

First assume X is compact and fix a sequence {xn}∞n=1 in X. By way of contradiction, suppose

{xn}∞n=1 has no convergent subsequence. So, no z ∈ X is a limit of a subsequence of {xn}∞n=1. This

implies there exists rz > 0 such that B(z, rz)∩{xn | n ∈ N} ⊆ {z}. The collection of sets B(z, rz)

for z ∈ X form an open cover of X. By the compactness of X, there is a finite subcover of the

form

X ⊆ B(z1, rz1) ∪ · · · ∪B(zk, rzk).

But, then X ∩ {xn | n ∈ N} ⊆ {z1, . . . , zk}. So, each xn is contained in {z1, . . . , zk}. It follows

from the pigeonhole principle that there is a zj with 1 ≤ j ≤ k that shows up infinitely many times

in the sequence {xn}∞n=1. Then there is a subsequence that is constantly zj . This subsequence then

converges to zj , which contradicts our assumption. The result follows.

Now suppose X is sequentially compact. Let U be an open cover of X and, by way of contradiction,

suppose there is no finite subcover of U . Now extract a countable subcover {V1, V2, . . .} of U . We

construct a sequence as follows. Pick x1 ∈ V1. Then for each successive n ∈ N, pick xn /∈
V1 ∪ · · · ∪ Vn−1, which is possible since V1 ∪ · · · ∪ Vn−1 does not cover X. Now, by assumption, X

is sequentially compact, which implies there is a subsequence of {xn}∞n=1 that converges to some

x ∈ X. Because {V1, V2, . . .} forms a cover for X, there exists Vm such that x ∈ Vm. But, then for
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each ε > 0 such that B(x, ε) ⊂ Vm, there is n ∈ N such that xn ∈ B(x, ε) and so xn ∈ Vm. This

implies there is an infinite number of terms in Um, which contradicts the construction of {xn}∞n=1.

Thus, the supposition that there is no finite subcover of X was false. Hence sequential compactness

implies compactness. �

Definition: Let (X, d) be a metric space, let E ⊆ X, and let x0 ∈ X. Then x0 is an interior point of E

if there exists r > 0 such that B(x0, r) ⊆ E. We say x0 is an exterior point of E if there exists r > 0

such that B(x0, r) ∩ E = ∅. We say x0 is a boundary point of E if it is neither an interior point nor an

exterior point of E. 4

Definition: Let (X, d) be a metric space, E ⊆ X, and x0 ∈ X. Then x0 is an adherent point of E if for

each r > 0, the ball B(x0, r) has a non-empty intersection with E, i.e., B(x0, r) ∩ E 6= ∅. The set of all

adherent points of E is called the closure of E and is denoted E. 4

Definition: Let (X, d) be a metric space and E ⊆ X. Then E is closed if it contains all of its boundary

points, i.e., ∂E ⊆ E. We say E is open if it contains none of its boundary points, i.e., ∂E ∩ E = ∅. If E

contains some of its boundary points but not others, then it is neither open nor closed. 4

Theorem:

a) For any collection {Gα} of open sets, ∪αGα is open.

b) For any collection {Fα} of closed sets, ∩αFα is closed.

c) For any finite collection G1, . . . , Gn of open sets, ∩ni=1Gi is open.

d) For any finite collection F1, . . . , Fn of closed sets, ∪ni=1Fi is closed.

4

Let (X, d) be a metric space and E ⊆ X.

a) E is open iff E = intE, i.e., for each x ∈ E there exists r > 0 such that B(x, r) ⊆ E.

b) E is closed iff E contains all its adherent points, i.e., for every convergent sequence (an)∞n=m in E,

the limit limn→ an of that sequence also lies in E.
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c) For any x0 and r > 0, the ball B(x0, r) is an open set. The closed ball {x ∈ X | d(x, x0) ≤ r} is a

closed set.

d) If x0 ∈ X, then the singleton set {x0} is closed.

e) E is open iff X\E is closed.

f) If E1, . . . , En are open sets in X, then E1 ∩ · · · ∩ En is also open. If F1, . . . , Fn is a finite collection

of closed sets in X, then F1 ∪ . . . ∪ Fn is also closed.

g) If {Eα}α∈I is a collection of open sets in X, then ∪α∈IEα is also open. If {Fα}α∈I is a collection of

closed sets in X, then ∩α∈IFα is also closed.

h) int(E) is the largest open set contained in E. Ē is the smallest closed set which contains E.

4

Definition: Let (X, d) be a metric space and Y ⊆ X and E ⊆ Y . Then E is relatively open with

respect to Y if it is open in the metric space (Y, dY×Y ). We say E is relatively closed with respect

to Y if it is closed in the metric space (Y, dY×Y ). 4

Suppose Y ⊂ X. A subset of E of Y is open relative to Y iff E = Y ∩G for some open subset G of X. 4

Definition: By an open cover of a set E in a metric space X, we mean a collection {Gα} of open subsets

of X such that E ⊂ ∪αGα. 4

Definition: A subset K of a metric space X is said to be compact if every open cover of K contains a

finite subcover. 4

If E ⊂ Rn, then the following properties are equivalent:

i) E is closed and bounded.

ii) E is compact.

iii) Every infinite subset of E has a limit point in E.

4

22 Last Modified: 4/18/2017



Basic Qual Notes Heaton

Definition: Two subsets A and B of a metric space X are said to be separated if both A ∩B and A ∩B
are empty, i.e., if no point of A lies in the closure of B and no point of B lies in the closure of A. A set

E ⊂ X is said to be connected if E is not a union of two nonempty separated sets. 4

Definition: A space X is path connected if for all x0, x1 ∈ X, there is a continuous function f : [0, 1]→ X

with f(0) = x0 and f(1) = x1. 4

Proposition: Path connectedness implies connectedness. 4

Proof:

Suppose that a space X is not connected. Then there exists nonempty disjoint open subsets

A0, A1 ⊆ X such that X = A0 ∪ A1. Then fix x0 ∈ A0 and x1 ∈ A1. By the assumption of path

connectedness, there is a continuous function f : [0, 1] → X with f(0) = x1 and f(1) = x1. Then

f−1(A0) and f−1(A1) are nonempty since 0 ∈ f−1(A0) and 1 ∈ f−1(A1). These sets f−1(A0) and

f−1(A1) are open by continuity of f , and disjoint by definition of A0 and A1, and have union [0, 1]

since A0 ∪ A1 = X. This contradicts the fact that [0, 1] is connected. Thus, we cannot have path

connectedness. The hypothesis follows through contraposition. �

A subset E of R is connected iff it has the following property: If x, y ∈ E and x < z < y, then z ∈ E. 4

Proposition: The subset [a, b] ⊂ R is connected. 4

Proof:

By way of contradiction, suppose there exist disjoint non-empty open sets A and B such that

A ∪ B = [a, b]. Without loss of generality, suppose b ∈ B. Clearly, [a, b] is bounded. Thus, A is

bounded and by the least upper bound principle, we can define c = sup(A). Since [a, b] is closed,

c ∈ [a, b].

First suppose c ∈ A. Then c < b since b ∈ B and A ∩ B = ∅. And, since A is open, there exists

ε > 0 so that B(c, ε) ∩ [a, b] ⊆ A. But, then c+ min{ε, b− ε} ∈ A, which contradicts the fact that

c = sup(A).

Now suppose c ∈ B. Note then c 6= a since then we’d have A = {0}, which is closed. Thus,

c ∈ (a, b]. Since B is open, there exists ε > 0 such that B(c, ε)∩ [a, b] ⊆ B. But then c−min{ε, a}
is an upper bound for A, again contradicting that c = supA. Hence [a, b] must be connected. �
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Definition: A metric space (X, d) is complete iff every Cauchy sequence in (X, d) is in fact convergent in

(X, d). 4

Let (X, d) be a metric space.

a) Let (Y, dY×Y ) be a subspace of (X, d). If (Y, dY×Y ) is complete, then Y must be closed in X.

b) Suppose (X, d) is complete and Y ⊆ X is closed. Then (Y, dY×Y ) is also complete.

4

Definition: A metric space (X, d) is sequentially compact iff every sequence in (X, d) has at least one

convergent subsequence. A subset Y ⊆ X is said to be compact if the subspace (Y, dY×Y ) is compact. 4

Definition: Let (X, d) be a metric space, and let Y ⊆ X. Then Y is bounded iff there exists a ball B(x, r)

in X which contains Y . 4

Definition: Let (X, d) be a compact metric space. Then (X, d) is both complete and bounded. 4

Lemma: C[0, 1] is complete. 4

Proof:

Let {fn} be a sequence in C[0, 1]. We proceed in three parts. First we show the point-wise limit

function f exists. Then we show {fn} converges to this limit f in operator norm. Lastly, we verify

that f is continuous and, thus, is in C[0, 1].

Let x ∈ [0, 1] and ε > 0 be given. Then since {fn} is Cauchy, there exists N ∈ N such that for all

n,m ≥ N we have

|fn(x)− fm(x)| ≤ ‖fn − fm‖ ≤ ε,

which implies that {fn(x)} is Cauchy in R. Since R is complete, lim
n→∞

fn(x) exists. Since this holds

for each x ∈ [0, 1], we define f : [0, 1]→ R by f(x) = lim
n→∞

fn(x) for each x ∈ [0, 1].
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To show {fn} converges to f in operator norm, given ε > 0, we must find N ∈ N such that

‖fn − f‖ ≤ ε whenever n ≥ N . Since {fn} is Cauchy, there is N ∈ N such that ‖fn − fm‖ ≤ ε/2

whenever n,m ≥ N . So, since the metric of a vector space is continuous, lim
n→∞

‖fn−fN‖ = ‖f−fN‖
and so ‖f − fN‖ ≤ ε/2. Thus,

‖f − fn‖ ≤ ‖fn − fN‖+ ‖f − fN‖ ≤ ε

whenever n ≥ N .

Now we show f is continuous. Since each fn is continuous, for each x0 ∈ [0, 1] there is δ > 0 such

that |fn(x)− fn(x0)| ≤ ε/3 whenever x ∈ [0, 1] with |x− x0| ≤ δ. So, Since the fn converge to f in

operator norm, there is an N ∈ N such that ‖fn−f‖ ≤ ε/3 whenever n ≥ N . Thus, if |x−x0| ≤ δ,
then

|f(x)− f(x0)| ≤ |f(x)− fN (x)|+ |fn(x)− fN (x0)|+ |fN (x0)− f(x0)|

≤ ‖f − fN‖+ |fn(x)− fn(x0)|+ ‖fN − f‖

≤ ε/3 + ε/3 + ε/3

= ε,

and so f is continuous at x0. Since x0 was arbitrary in [0, 1], it follows that f is continuous on

[0, 1]. Thence f ∈ C[0, 1] and we are done. �

Let (X, d) be a metric space and Y ⊆ X be compact. Let (Vi)i∈I be a collection of open sets in X that

covers Y , i.e.,

Y ⊆ ∪i∈IVi. (13)

Then there exists a finite subset F ⊆ I such that

Y ⊆ ∪i∈FVi. (14)

4
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Definition: A Baire space is a topological space with that property that for each countable collection of

open dense sets {Un}∞n=1, their intersection ∩∞n=1Un is dense. 4

Baire Category Theorem: Every complete metric space is a Baire space. Equivalently, a non-empty

complete metric space is not the countable union of nowhere-dense closed sets. Equivalently, if a non-empty

complete metric space is the countable union of closed sets, then one of these closed sets has non-empty

interior.1 4

Baire Category Theorem: Every locally compact Hausdorff space is a Baire space. 4

Stone-Weierstrass Theorem: Suppose f [a, b]→ R is continuous. Then ∀ ε > 0, there exists a polyno-

mial p(x) such that ∀ x ∈ [a, b], |f(x)− p(x)| < ε, or equivalently, ‖f − p‖∞ < ε. 4

Taylor’s Theorem: Let f : [a, b]→ R and suppose f (n−1) is continuous on [a, b] and f (n) exists on (a, b)

for some n ∈ N. Also let x0 ∈ (a, b). Then there exists a point ξ between x0 and x ∈ [a, b] such that

f(x) =
n−1∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (n)(ξ)

n!
(x− x0)n.

4

Cauchy Integral Remainder Formula: Let f : [a, b]→ R and suppose f has n derivatives and f (n) is

continuous on [a, b] for some n ∈ N. Then for each point x ∈ [a, b]

f(x) =

n−1∑
k=0

f (k)(x0)

k!
(x− x0)k +

1

n!

∫ x

x0

f (n)(t)(x− t)n dt.

4

Proof:

Use induction and integration by parts. The base case if the fundamental theorem of calculus. �

1See Kreyzig’s text on this. It provides solid explanation.
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3 Linear Algebra

Definition: The rank is the dimension of the image of an operator and the nullity is the dimension of the

kernel of an operator. 4

Rank-Nullity Theorem: Let V be a finite dimensional vector space and T : V → V be linear. Then

dimV = dim imT + dim kerT. (15)

This is also known as the Fundamental Theorem of Linear Maps in Axler’s text. 4

Proof:

Let u1, . . . , um be a basis of kerT so that dim kerT = m. This can be extended to a basis

u1, . . . , um, v1, . . . , vn of V where dimV = m + n. So, we need only show dim imT = n, which

we do by showing Tv1, . . . , T vn is a basis of imT .

Let v ∈ V . Then there are unique scalars a1, . . . , am, b1, . . . , bn such that

v = a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn. (16)

Then
Tv = T (a1u1 + · · ·+ amum + b1v1 + · · ·+ bnvn)

= a1T (u1) + · · ·+ amT (um) + b1T (v1) + · · ·+ bnT (vn)

= b1T (v1) + · · ·+ bnT (vn)

(17)

where the final equality holds since u1, . . . , um ∈ kerT . This shows imT is spanned by Tv1, . . . , T vn.

All that remains is to show these vectors are linearly independent. Thence suppose there are

c1, . . . , cn such that

0 = c1T (v1) + · · ·+ cnT (vn) = T (c1v1 + · · · cnvn) (18)

where the second equality holds by linearity of T . This implies c1v1 + · · · + cnvn ∈ kerT. Since

u1, . . . , um form a basis for kerT , there are scalars d1, . . . , dm such that

c1v1 + · · · cnvn = d1u1 + · · · dmum ⇒ 0 = c1v1 + · · · cnvn − d1u1 − · · · − dmum. (19)

Since v1, . . . , vn, u1, . . . , um forms a basis for V , these vectors are linearly independent and so

all the ci’s and di’s must be zero. Returning to (18), we have that T (v1), . . . , T (vn) are linearly

independent, as desired. This completes the proof. �
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Lemma: Suppose T : V → V is linear. Let λ1, . . . , λm be distinct eigenvalues of T and v1, . . . , vm be

corresponding eigenvectors. Then {v1, . . . , vm} is linearly independent 4

Proof:

By way of contradiction, suppose otherwise. Let k be the smallest index such that vk ∈ span(v1, . . . , vk−1).

Then there are a1, . . . , ak−1 not all zero such that

vk = a1v1 + · · ·+ ak−1vk−1. (20)

Then
λkvk = T (a1v1 + · · ·+ ak−1vk−1)

= a1T (v1) + · · ·+ ak−1T (vk−1)

= a1λ1v1 + · · ·+ ak−1λk−1vk−1.

(21)

Multiplying (20) by λk and subtracting (21) we obtain

0 = (λk − λk)vk = a1(λk − λ1)v1 + · · ·+ ak−1(λk − λk−1)vk−1. (22)

By hypothesis, λk − λj 6= 0 for j = 1, . . . , k − 1. Furthermore, by our initial assumption,

{v1, . . . , vk−1} is linearly independent. Hence a1 = · · · = ak−1 = 0. But, this implies vk = 0,

which cannot be the case since eigenvectors are, by definition, nonzero. Hence the initial assump-

tion was false and we conclude {v1, . . . , vm} is linearly independent. �

Schur’s Theorem: Suppose V is a finite-dimensional complex vector space and T : V → V is a linear

operator. Then T has an upper-triangular matrix with respect to some orthonormal basis of V . 4

Definition: Let V,W be finite dimensional vector spaces and suppose T : V →W is a linear operator. Then

the adjoint of T is the function T ∗ : W → V such that 〈Tv,w〉 = 〈v, T ∗w〉 for every v ∈ V and w ∈W . 4

Proposition: Properties of the adjoint:

a) (S + T )∗ = S∗ + T ∗ for S, T ∈ L(V,W ).

b) (λT )∗ = λT ∗ for all λ ∈ F and T ∈ L(V,W ).

c) (T ∗)∗ = T for all T ∈ L(V,W ).
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d) I∗ = I where I is the identity operator on V .

e) (ST )∗ = T ∗S∗ for all T ∈ L(V,W ) and S ∈ L(W,U).

4

Proposition: More properties of the adjoint. Suppose T ∈ L(V,W ). Then

a) null T ∗ = (range T )⊥,

b) range T ∗ = (null T )⊥,

c) null T = (range T ∗)⊥,

d) range T = (null T ∗)⊥.

4

Definition: An linear operator T : V → V is called self-adjoint if T = T ∗, i.e., if 〈Tv,w〉 = 〈v, Tw〉 for all

v, w ∈ V . 4

Proposition: Every eigenvalue of a self-adjoint operator is real. 4

Proof:

Suppose T : V → V is self-adjoint. Let λ be an eigenvalue of T , and let v be a nonzero vector in

V such that Tv = λv. Then

λ‖v‖2 = 〈λv, v〉 = 〈Tv, v〉 = 〈v, Tv〉 = 〈v, λv〉 = λ‖v‖2. (23)

Thus, λ = λ, which implies that λ is real, as desired. �

Definition: A linear operator T : V → V on an inner product space is normal if it commutes with its

adjoint, i.e., if TT ∗ = T ∗T . 4

Complex Spectral Theorem: Suppose V is a finite dimensional vector space over C and T : V → V is

a linear operator. Then the following are equivalent:

a) T is normal.

b) V has an orthonormal basis consisting of eigenvectors of T .
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c) T has a diagonal matrix with respect to some orthonormal basis of V .

4

Real Spectral Theorem: Suppose V is a finite dimensional vector space over C and T : V → V is a

linear operator. Then the following are equivalent:

a) T is self-adjoint.

b) V has an orthonormal basis consisting of eigenvectors of T .

c) T has a diagonal matrix with respect to some orthonormal basis of V .

4

Definition: A linear mapping T : V → V is called positive if T is self-adjoint and 〈Tv, v〉 ≥ 0 for all

v ∈ V . 4

Definition: An operator R is called a square root of an operator T if R2 = T . 4

Proposition: Let T : V → V be a linear mapping. Then the following are equivalent:

a) T is positive.

b) T is self-adjoint and all the eigenvalues of T are nonnegative.

c) T has a positive square root.

d) T has a self-adjoint square root.

e) There exists a linear operator R : V → R such that T = R∗R.

4

Definition: A linear operator S : V → V is called an isometry if ‖Sv‖ = ‖v‖ for all v ∈ V . If the inner

product space is real, then S is also called an orthogonal operator. If the inner product space is complex,

the S is also called a unitary operator. 4
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Cayley-Hamilton Suppose V is complex vector space and T : V → V is linear. Let q denote the

characteristic polynomial of T . Then q(T ) = 0. 4

Proof:

Let λ1, . . . , λp be the distinct eigenvalues of T and d1, . . . , dp the dimensions of the correspond-

ing generalized eigenspaces Eλ1 , . . . , Eλp . We claim the restriction of (T − λjI) to Eλj (i.e.,

(T − λjI)|Eλj ) is nilpotent for each j ∈ {1, . . . , p}. This implies (T − λj)dj
∣∣
Eλj

= 0. And,

V = Eλ1 ⊕ · · · ⊕ Eλp . Thus, to prove q(T ) = 0, it suffices to show q(T )|Eλj = 0 for each j.

So, fix any j ∈ {1, . . . , p}. Then

q(T ) = (T − λ1I)d1 · · · (T − λpI)dp . (24)

Note the operators on the right hand side commute. This implies we can move (T −λjI)dj do to be

the last term on the right hand side. And, (T − λjI)dj
∣∣
Eλj

= 0. Thence q(T )|Eλj = 0, as desired.

All that remains is to verify (T − λjI)|Eλj is nilpotent. �

3.1 Matrix Exponentiation & Related Topics

Definition: The norm of a matrix A is defined by

‖A‖ = sup{‖Ax‖ | x ∈ Rn and ‖x‖ = 1} (25)

where ‖x‖ denote the Euclidean norm in Rn. 4

Proposition: For matrices A,B, ‖AB‖ ≤ ‖A‖‖B‖. 4

Proof:

For any x ∈ Rn with ‖x‖ = 1 observe that

‖A‖ ≥
∥∥∥∥A Bx

‖Bx‖

∥∥∥∥ =
‖ABx‖
‖Bx‖

≥ ‖ABx‖
‖B‖

, (26)

which implies ‖ABx‖ ≤ ‖A‖‖B‖. Since x is an arbitrary unit vector in Rn, we must have ‖AB‖ ≤
‖A‖‖B‖. �
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Remark: By induction, the above proposition implies ‖An‖ ≤ ‖A‖n. 4

Definition: For a linear operator T : V → V , where V is a finite dimensional inner product space, we

define the exponential of T to be

exp(T ) =

∞∑
n=0

Tn

n!
.

4

Remark: Consider the IVP: x′(t) = Ax and x(t0) = x0 where A is a square matrix with real or complex

scalars. This can be solved using matrix exponentials. Indeed,

x(t) = x0 exp (A(t− t0)) .

Since exp(0) = 1V , this choice of x(t) gives the correct initial value. Through expanding out the series, we

also see that x′(t) = Ax(t). 4

Suppose A ∈Mn×n(C). Prove that if ‖A‖ < 1, then I −A is invertible. 4

Proof:

We first show I − A is invertible iff 1 is not an eigenvalue of A. We argue by proving the con-

trapositive of each implication in this claim. First suppose 1 is an eigenvalue of A. Then there

is nonzero v ∈ Cn such that (I − A)v = 0, implying that I − A is not one-to-one and, thus, not

invertible. Hence if A is invertible, then 1 is not an eigenvalue of A. Now suppose A is singular.

Then det(I − A) = 0, which implies 1 is an eigenvalue of A. Hence if 1 is not an eigenvalue of A,

then I −A is invertible.

If 1 is an eigenvalue of A, then there is a unit vector v ∈ Cn such that ‖A‖ ≥ ‖Av‖ = ‖v‖ = 1.

Thus, if ‖A‖ < 1, then 1 is not an eigenvalue of A and so ‖A‖ < 1 implies I −A is invertible. �
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3.2 Determinants

Definition: The determinant of an n× n matrix A = (ai,j) is given by

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i)

where sgn denotes the sign function and the sum occurs overall all permutations σ of the set {1, 2 . . . , n},
which is the group Sn. 4

Proposition: If A is an n× n matrix, then det(−A) = (−1)n det(A). 4

Proof:

Let B = (bij) = −A. Then bij = −aij and, using the definition of determinant,

det(−A) = det(B) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

bi,σ(i)

=
∑
σ∈Sn

sgn(σ)

n∏
i=1

−ai,σ(i)

=
∑
σ∈Sn

sgn(σ)(−1)n
n∏
i=1

ai,σ(i)

= (−1)n
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i)

= (−1)n det(A).

�

Proposition: The set of invertible matrices is dense in Mn×n(C). 4

Proof:

First note the set of invertible matrices is nonempty since the identity matrix I is itself invertible

with I = I−1. Let A ∈ Mn×n(C) be given. If A is invertible, then we are done. So, suppose A is

singular. Given ε > 0, we must show there is an invertible matrix within a distance ε of A. Then

let B ∈Mn×n(C) be invertible and define L : R→Mn×n(C) by L(t) = (1− t)A+ tB. Now define

p : R → R by p(t) = det(L(t)) and note that p is a polynomial. Moreover, p is not identically

zero since p(1) = det(B) 6= 0. Also, p(0) = det(A) = 0 and since p is a polynomial, it has only
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finitely many zeros t0, . . . , tn. So, define d = min{|ti| | i = 1, . . . , n and ti 6= 0}. Then p(t) 6= 0 for

t ∈ (−d, d) − {0}. Now define δ = min{d/2, ε/‖A − B‖}. Then p(δ) = det(L(δ)) 6= 0 and so L(δ)

is invertible. Moreover,

‖A− L(δ)‖ = ‖A− ([1− δ]A+ δB)‖ = δ‖A−B‖ ≤ ε,

as desired. �

Canonical Forms Example: Suppose A is a 12×12 complex matrix with minimal polynomial (t−λ)6 where

λ ∈ C is an eigenvalue of A. Suppose also that dim(ker (A− λI)) = 4 and dim(ker (A− λI))2 = 6. What

is the Jordan form of A?

Proof:

Since dim(ker (A − λI)) = 4, we know there are 4 Jordan blocks. Since dim(ker (A − λI)2) −
dim(ker (A−λI)) = 2, we know there are 2 Jordan blocks of size ≥ 2. Hence 2 of the Jordan blocks

are of size 1. From the minimal polynomial, we know one Jordan block is of size 6. The remaining

Jordan block must then be of size 12− 1− 1− 6 = 4, and we are done. �

If J is a matrix in Jordan form, then J t and J are similar. 4

Proof:

Here we provide a proof sketch. Simply note for a Jordan matrix

J =


λ 1 0 0

0 λ 1 0

0 0 λ 1

0 0 0 λ


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that 
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




λ 1 0 0

0 λ 1 0

0 0 λ 1

0 0 0 λ




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



=


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




0 0 1 λ

0 1 λ 0

1 λ 0 0

λ 0 0 0



=


λ 0 0 0

1 λ 0 0

0 1 λ 0

0 0 1 λ


= J t.

This completes the sketch. �

Example: Find an invertible matrix P such that J = PAP−1 is in Jordan canonical form where

A =

 −2 2 1

−7 4 2

5 0 0

 .

Proof:

We first compute the eigenvalues of A to see

χA(λ) = det(A− λI) = (−1)3+1(5)(2 · 2− [4− λ]) + (−1)3+3(−λ)([−2− λ][4− λ] + 14)

= 5λ− λ(λ2 − 2λ+ 6)

= (−λ)(λ2 − 2λ+ 1)

= (−λ)(λ− 1)2.

So, the eigenvalues are 0 and 1 with multiplicity 1 and 2, respectively. The kernel of A − 0I is

found by row reducing the linear system (A− 0I)x = 0, i.e., −2 2 1 0

−7 4 2 0

5 0 0 0

 ∼
 1 0 0 0

0 2 1 0

0 0 0 0

 ,
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which implies ker(A− 0I) = span{(0, 1,−2)}. Similarly, from the linear system (A− 1I)x = 0 we

see  −3 2 1 0

−7 3 2 0

5 0 0 −1

 ∼
 1 1 0 0

0 5 1 0

0 0 0 0

 ⇒

 x1 + x2 = 0

5x2 + x3 = 0.

Letting x2 = 1, this gives (x1, x2, x3) = (1,−1, 5), i.e., ker(A− 1I) = span{(1,−1, 5)}. Similarly,

ker(A− 1I)2 = ker

 −2 2 1

−7 4 2

5 0 0


2

= ker

 0 0 0

10 −5 −3

−20 10 6

 = span{(1, 2, 0), (1,−1, 5)}.

Thus, letting P = [v1 v2 v3] where vi corresponds to the i-th eigenvector,

 0 0 0

0 1 1

0 0 1

 = J = PAP−1 =

 0 1 1

1 −1 2

−2 5 0


 −2 2 1

−7 4 2

5 0 0


 0 1 1

1 −1 2

−2 5 0


−1

.

�

Cauchy-Schwarz inequality: | 〈u, v〉 |2 ≤ 〈u, u〉 · 〈v, v〉, or | 〈u, v〉 | ≤ ‖u‖‖v‖. 4
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4 Example Solutions

4.1 Old Basic Exam Solutions

2001

F01.01: Let K ⊆ R be compact and f : K → R be continuous. Prove there exists x0 ∈ K such that

f(x) ≤ f(x0) for all x ∈ K.

Proof:

Suppose f is not bounded above on K. Then, for each n ∈ N, there exists xn ∈ K such that

f(xn) > n. This defines a sequence {xn}. Because K is compact, it is closed and bounded. So, by

the Bolzano-Weierstrss theorem, there exists a convergent subsequence {xnk} of {xn}, whose limit

we shall denote by x∗. Since K is closed, x∗ ∈ K. Because f is continuous, we know {f(xnk)}
converges to f(x∗). But, f(xnk) > nk ≥ k for each k ∈ N, which implies {f(xnk)} diverges to ∞,

a contradiction. Hence f is bounded above on [a, b].

By the Dedekind-completeness of R, a least upper bound M of f exists. We seek to find x0 ∈ K
such that f(x0) = M . Let n ∈ N. Since M is the least upper bound, there must exists dn ∈ [a, b] so

that M − 1/n < f(dn). This defines a sequence {dn}. Since M is an upper bound for f , it follows

that M − 1/n ≤ f(dn) ≤M for each n ∈ N. Therefore, {f(dn)} →M .

The Bolzano-Weierstrass theorem tells us there exists a subsequence {dnk}, which converges to some

x0, and, since K is closed, x0 ∈ K. Since f is continuous at x0, the sequence {f(dnk)} → f(x0).

But, {f(dnk)} is a subsequence of {f(dn)}, which converges to M . Hence M = f(x0). Therefore,

f attains its supremum value at x0 so that f(x) ≤ f(x0) ∀ x ∈ K. �

F01.02: Let an = (−1)n/n for each n ∈ N and let α ∈ R. Prove there is a bijection σ : N→ N such that

∞∑
n−1

aσ(n) = α.

Proof:

First, we note by the alternating series test that
∑∞

n−1 an converges (since {1/n} → 0 as n→∞)

while the harmonic series
∑∞

n−1 |an| diverges. That is, our series is conditionally convergent. For

the remaineder of this proof, see F08.5. �

37 Last Modified: 4/18/2017



Basic Qual Notes Heaton

F01.03: Let E be the a set of real numbers and {fn} be a sequence of continuous real-valued functions on

E. Prove that if fn(x) converges to f(x) uniformly on E, then f(x) is continuous on E. (Recall that fn(x)

converges to f(x) uniformly on E means that for ε > 0 there is an N ∈ N such that whenever n > N and

x ∈ E, |fn(x)− f(x)| < ε.)

Proof:

We first show that if each fn is continuous at a point x0 ∈ E, then so must be f . Let ε > 0 be

given. To show that f is continuous at x0, we must find a δ > 0 such that whenever x ∈ E and

|x − x0| < δ, |f(x) − f(x0)| < ε. Using the convergence of {fn}, there exists N ∈ N such that

whenever x ∈ E and n ≥ N , |fn(x)− f(x)| < ε/3. Also, by the continuity of fN , there is a δ > 0

such that |x− x0| < δ implies |fN (x)− fN (x0)| < ε/3. Thus, whenever |x0 − x| < δ,

|f(x0)− f(x)| ≤ |f(x0)− fN (x0)|+ |fN (x0)− fN (x)|+ |fN (x)− f(x)| < ε/3 + ε/3 + ε/3 = ε.

Since x0 was chosen arbitrarily, this holds for all x ∈ E. This implies that f is continuous. �

F01.04: Let S be the set of all sequences {xn} such that for all n ∈ N, xn ∈ {0, 1}. Prove there does not

exists a one-to-one mapping form the set N onto the set S.

Proof:

By way of contradiction, suppose there exists a bijection σ : N → S. Then, for each n ∈ N, define

the sequence {xn} by 1 if σ(n)n is 0 and 1 if σ(n)n is 0. Then {xn} ∈ S. This implies there exists

M ∈ N such that {xn} = σ(M) and so xM = σ(M)M . But, this contradicts the choice of {xn}.
Hence no such bijection σ can exist. �

F01.05: Suppose that f : R2 → R is a continuous function such that partial derivatives
∂f

∂x
and

∂f

∂y
of

f exists everywhere and are continuous everywhere, and
∂2f

∂x∂y
and

∂2f

∂y∂x
also exist and are continuous

everywhere. Prove that
∂2f

∂x∂y
=

∂2f

∂y∂x
.

Proof:

We shall prove the theorem for z0 = 0 ∈ R2. The general case directly follows by replacing f(z)
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with f(z + z0). For notational convenience let e1, e2 denote the standard basis vectors for R2 and

set x1 := x and x2 := y. Then define

a :=
∂

∂x1

(
∂f

∂x2

)
(z0) and a′ :=

∂

∂x2

(
∂f

∂x1

)
(z0).

We seek to show a′ = a. Let ε > 0 be given. Since our double derivatives of f of interest are

continuous, there is a δ > 0 such that∣∣∣∣ ∂2f

∂x1∂x2
(z)− a

∣∣∣∣ ≤ ε and

∣∣∣∣ ∂2f

∂x2∂x1
(z)− a′

∣∣∣∣ ≤ ε
whenever |z| ≤ 2δ. Now define the quantity

X := f(δe1 + δe2)− f(δe1)− f(δe2) + f(0).

From the fundamental theorem of calculus, we have

f(δe1 + δe2)− f(δe2) =

∫ δ

0

∂f

∂x1
(x1e1 + δe2) dx1 and f(δe1)− f(0)=

∫ δ

0

∂f

∂x1
(x1e1) dx1

and hence

X =

∫ δ

0

(
∂f

∂x1
(x1e1 + δe2)− ∂f

∂x1
(x1e1)

)
dx1.

But by the mean value theorem, for each x1 we have

∂f

∂x1
(x1e1 + δe2)− ∂f

∂x1
(x1e1) = δ

∂f

∂x2∂x1
(x1e1 + x2e2)

for some x2 ∈ [0, δ]. By our construction of δ, we thus have∣∣∣∣ ∂f∂x1
(x1e1 + δe2)− ∂f

∂x1
(x1e1)− δa

∣∣∣∣ ≤ εδ.
Integrating from 0 to δ, we thus obtain |X − δ2a| ≤ εδ2. We can run the same argument with the

subscripts 1 and 2 reversed to obtain |X − δ2a′| ≤ εδ2. From the triangle inequality it follows that

|δ2a− δ2a′| ≤ 2εδ2 and thus |a−a′| ≤ 2ε. But this is true for all ε > 0, and a and a′ do not depend

on ε, and so we must have a = a′ as desired. �

F01.07: If V is a real vector space and X is a subspace, let V ∗ = {f : V → R | f is linear} be the dual

space of V and X0 = {f ∈ V ∗ | f(x) = 0 ∀ x ∈ X} be the annihilator of X. Let T : V → W be a linear

transformation on finite dimensional real vector spaces. Recall that the transpose of T is the linear map
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T t : W ∗ → V ∗ defined by T t(f) = f ◦ T . Prove the following:

a) im(T )0 = ker(T t).

b) dim(im(T )) = dim(im(T t)).

Proof:

a) By definition,

im(T )0 = {f ∈W ∗ | f(x) = 0 ∀ x ∈ im(T )}

= {f ∈W ∗ | f(T (x)) = 0 ∀ x ∈ V }

= {f ∈W ∗ | (f ◦ T )(x) = 0 ∀ x ∈ V }

= {f ∈W ∗ | T t(f)(x) = 0 ∀ x ∈ V }

= {f ∈W ∗ | T t(f) = 0W ∗}

= ker(T t).

b) Let e1, . . . , em denote a basis of im(T ) so that m = dim(im(T )). Then this basis can be

extended to a basis e1, . . . , en of W where m ≤ n. The dual basis of e1, . . . , en consists of the

elements φ1, . . . , φn in W ∗ defined by

φj(ek) =

1 if k = j,

0 if k 6= j.

We claim {T t(φj)}mj=1 forms a basis for im(T t). Showing this will reveal the desired relation

dim(im(T t)) = m = dim(im(T )). Indeed, for each φ ∈ W ∗ there are unique β1, . . . , βn ∈ R
such that φ = β1φ1 + · · · + βnφn. Similarly, since T (v) ∈ im(T ), for each v ∈ V there are

unique scalars α1, . . . , αm ∈ R such that T (v) = α1e1 + · · ·+αmem. Thus, using linearity and
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the definition of each φj ,

T t(φ)(v) = φ(T (v)) = φ(α1e1 + · · ·αmem)

=

m∑
j=1

αjφ(ej)

=
m∑
j=1

αj(β1φ1 + · · ·+ βnφn)(ej)

=
m∑
j=1

αjβjφj(ej)

=
m∑
j=1

βjφj(T (v))

= (β1φ1 + · · ·+ βmφm)(T (v))

= (β1T
t(φ1) + · · ·+ βmT

t(φm))(v)

where we note αjφj(ej) = φj(αjej) = φj(T (v)). This implies each element T t(φ) ∈ im(T t)

can be expressed as a linear combination of T t(φj) for j = 1, . . . ,m. Moreover, the choice of

βj was unique and so {T t(φj)}mj=1 is linearly independent. Hence {T t(φj)}mj=1 form a basis for

im(T t) and we are done.

�

F01.09: Let A be a real symmetric matrix. Prove that there exists an invertible matrix P such that P−1AP

is diagonal. [You cannot just quote a theorem, but must prove it from scratch.]

Proof:

Let T : V → V denote the linear operator associated with the matrix A where V = Rn. Then

T is self-adjoint. We claim there exists an orthonormal basis of V consisting of eigenvectors of T ,

which implies T can be represented by a diagonal matrix relative to an orthonormal basis. Indeed,

if {v1, . . . , vn} is an orthonormal list of eigenvectors of T , then define P = [v1 · · · vn] to be the

matrix consisting of the column vector of A. Then the ij-th entry of P TP is

(P TP )ij = 〈vi, vj〉 = δij

where δij denotes the Kronecker delta. Thus, P TP = I and so P T = P−1. Moreover, the ij-th

entry of the product P−1AP is then

(P TAP )ij = ([v1 · · · vn]T [λ1v1 · · · λnvn])ij= 〈vi, λjvj〉 = λj 〈vi, vj〉= λjδij
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and so P−1AP is the diagonal matrix diag(λ1, . . . , λn) where λi denotes the eigenvalue of vi for

i = 1, . . . , n.

All that remains it to prove there exists an orthonormal basis of V consisting of eigenvectors of

T . We proceed by induction on the dimension of V . If dim V = 1, the claim holds trivially.

Suppose the claim holds for some dimension k > 1, and let dim V = k+ 1. Let v denote a nonzero

eigenvector of T , W = span(v), and define uk+1 := v1/‖v1‖, a unit vector in W . Since v is an

eigenvector of T , the subspace W of V is invariant under T . And, for w ∈W and z ∈W⊥ we have

〈Tz,w〉 = 〈z, Tw〉 = 0

where the first equality holds since T is self-adjoint and the second because Tw ∈ U and z ∈ U⊥.

Thus, it must follow that Tz ∈ W⊥ so that W⊥ is invariant under T . Moreover, the restriction

T |U of T to W⊥ is self-adjoint since for y, z ∈W⊥ we have

〈(T |U )y, z〉 = 〈Ty, z〉 = 〈y, Tz〉 = 〈y, (T |U )z〉 .

Thus, the restriction of T to W⊥ is a symmetric operator. However, dim W⊥ = k since dim W = 1

and so, by the induction hypothesis, there is an orthonormal basis {u1, . . . , uk} of W⊥ consisting

of eigenvectors of the restriction of T to W and, thus, of T . And, 〈uk+1, uj〉 = 0 for j = 1, . . . , k

since uj ∈ W⊥. Hence {u1, . . . , uk+1} is an orthonormal set, consisting of eigenvectors of T , and

we have closed the induction, thereby proving the claim. �

F01.10: Let V be a complex vector space and T : V → V be a linear transformation. Let v1, . . . , vn be

non-zero vectors in V , each an eigenvector of a different eigenvalue. Prove that {v1, . . . , vn} is linearly

independent.

Proof:

We shall proceed by induction on n. Of course, if n = 1, and α1v1 = 0 with α1 ∈ C, then α1 = 0

since v1 6= 0. Now, suppose the hypothesis holds for some set of k eigenvalues v1, . . . , vk. Then

suppose there are scalars α1, . . . , αk+1 ∈ C such that a collection of k+ 1 eigenvectors v1, . . . , vk+1

satisfies

α1v1 + · · ·+ αk+1vk+1 = 0. (27)

Then, using the linearity of T ,

0 = T (0) = T (α1v1 + · · ·+ αk+1vk+1) = α1λ1v1 + · · ·+ αk+1λk+1vk+1. (28)
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Now, subtracting λk+1 multiplied by (27) from (28) gives

0 = α1(λk+1 − λ1)v1 + · · ·+ αk+1��
���

���:0
(λk+1 − λk+1)vk+1 = α1(λk+1 − λ1)v1 + · · ·+ αk(λk+1 − λk)vk.

Since the λi’s are distinct, it follows that (λk+1−λi)vi is a nonzero scalar multiple of an eigenvector

of T and, thus, is also an eigenvector of T for i = 1, . . . , k. This implies we have a collection of k

non-zero eigenvectors of T with distinct eigenvalues. By the inductive hypothesis, these are linearly

independent and so α1 = α2 = · · · = αk = 0. Returning to (27), this implies

0 = 0v1 + 0v2 + · · ·+ 0vk + αk+1vk+1 = αk+1vk+1 ⇒ αk+1 = 0

since vk+1 6= 0. Thus, each αi is identically zero for i = 1, . . . , k + 1 and we have closed the

induction. Hence, such a collection {v1, . . . , vn} of non-zero eigenvectors with distinct eigenvalues

is linearly independent for each n ∈ N. �
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2002

W02.01: a) State some reasonably general conditions under which this “differentiation under the integral

sign” formula is valid:
d

dx

∫ b

a
f(x, y) dy =

∫ b

a

∂f

∂x
dy.

b) Prove that the formula is valid under the conditions you gave in a).

Proof:

a) Let f : [a, b] × [c, d] → R. Suppose
∂f

∂x
exists on (a, b) × [c, d] and extends to a continuous

function on [a, b]× [c, d]. Then the differentiation under the integral sign formula holds.

b) Define u(x) :=
∫ b
a f(x, y) dy. Then for h with x+ h ∈ [a, b] we have∣∣∣∣u(x+ h)− u(x)

h
−
∫ b

a

∂f

∂x
(x, y) dy

∣∣∣∣ =

∣∣∣∣∫ b

a

(
f(x+ h)− f(x)

h
− ∂f

∂x
(x, y)

)
dy

∣∣∣∣
≤
∫ b

a

∣∣∣∣(f(x+ h)− f(x)

h
− ∂f

∂x
(x, y)

)∣∣∣∣ dy.

Let ε > 0 be given. To prove the desired relation, it suffices to find δ > 0 such that the left

hand side is less than ε whenever |h| < δ. By the Mean Value Theorem, there exists c ∈ (0, 1)

such that
∂f

∂x
(x+ ch, y) =

f(x+ h)− f(x)

h
.

Now, since
∂f

∂x
is continuous on the compact set [a, b]× [c, d], it is uniformly continuous. Then

we can choose δ > 0 such that ‖(x, y)− (x′, y′)‖ < δ implies∣∣∣∣∂f∂x (x′, y′)− ∂f

∂x
(x, y)

∣∣∣∣ < ε

b− a
.

Using the above, for |h| < δ, it follows that∣∣∣∣u(x+ h)− u(x)

h
−
∫ b

a

∂f

∂x
(x, y) dy

∣∣∣∣ ≤ ∫ b

a

∣∣∣∣(f(x+ h)− f(x)

h
− ∂f

∂x
(x, y)

)∣∣∣∣ dy.

=

∫ b

a

∣∣∣∣∂f∂x (x+ ch, y)− ∂f

∂x
(x, y)

∣∣∣∣ dy

<

∫ b

a

ε

b− a
= ε,

and we are done.

�
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W02.02: Prove that the unit interval [0, 1] is sequentially compact, i.e., that every infinite sequence has a

convergent subsequence. [Prove this directly. Do not just quote general theorems like Heini-Borel.]

Proof:

Let {xn}∞n=1 be a sequence in [0, 1]. We proceed by induction to find a convergent subsequence.

Define I0 = [0, 1]. Then define n0 = 0 and so, of course, xn0 ∈ I0. Now, if there are infinitely many

terms in the left half of I0, define I1 = [0, 1/2]. Otherwise, define I1 = [1/2, 1]. Then pick n1 so

that xn1 ∈ I1. This completes the base case. Now assume that for k ≥ 1 we have successively found

intervals in the fashion Ij and nj so that xnj ∈ Ij and |Ij | = 2−j for j = 1, . . . , k. Now, if there are

infinitely many terms in the left side of Ik, define Ik+1 to be the left hand side of Ik. Otherwise,

let Ik+1 be the right side of Ik. Then pick nk+1 so that xnk+1
∈ Ik+1. This closed the induction.

Let ε > 0 be given. By the Archimedean Property of R, we can pick N ∈ N so that 2−N ≤ ε (n.b.

we could write this more directly using logarithms). Then for all i, j ≥ N it follows that

|xni − xnj | ≤ |IN | = 2−N ≤ ε,

which implies that {xnk}∞k=1 is Cauchy. Because [0, 1] is complete, it follows that the Cauchy

subsequence {xnk}∞k=1 converges. This completes the proof. �

W02.03: Prove that the open unit ball in R2, {(x, y) ∈ R2 | x2 + y2 < 1} is connected. [You may assume

that intervals in R are connected. You should not just quote other general results, but give a direct proof.]

Proof:

We begin by first proving two lemmas.

Lemma 1: The image of a connected set under a continuous function is connected.

proof: Let S be a connected set and f be a continuous function. Then suppose that f(S) is not con-

nected, i.e., that there exists nonempty open disjoint subsets A,B ⊂ f(S) such that A∪B = f(S).

It follows that f−1(A) and f−1(B) are disjoint and non-empty. But, because f is continuous, it

further follows that f−1(A) and f−1(B) are open. So, these are nonempty disjoint open subsets of

S. In fact, since f(S) = A∪B, it follows that f−1(A)∪ f−1(B) = S. But, this contradicts the fact

that S is connected. Hence f(S) must be connected.

Lemma 2: If a collection {Sα}α∈I consists of connected sets and ∩α∈ISα 6= ∅, then ∪α∈ISα is

connected. proof: Suppose ∪αSα = A ∪B for nonempty disjoint open subsets A,B. Then for each
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α ∈ I, Sα = (Sα ∩ A) ∪ (Sα ∩ B). Since ∩αSα 6= ∅, there is x ∈ Sα. This implies either Sα ∩ A or

Sα∩B is nonempty. Suppose, without loss of generality, that x ∈ Sα∩A. Because Sα is connected,

it follows that Sα ∩ B = ∅. However, this implies (∪αSα) ∩ B = ∅, which contradicts our initial

hypothesis. Hence ∪αSα is connected.

For each θ ∈ [0, 2π) define fθ : R→ R2 be fθ(t) = (t cos(θ), t sin(θ)). Clearly, each fθ is continuous

and 0 ∈ ∩θ∈[0,2π)fθ([0, 1)). Moreover, since [0, 1) is connected, by Lemma 1, fθ([0, 1)) is connected.

By Lemma 2, ∪θ∈[0,2π)fθ([0, 1)) is connected. However, ∪θ∈[0,2π)fθ([0, 1)) is the unit ball in R2 and

so {(x, y) ∈ R2 | x2 + y2 < 1} is connected. �

W02.04: Prove that the set of irrational numbers I in R is not a countable union of closed sets.

Proof:

By way of contradiction, suppose that I is a countable union of closed sets. Then there is a collection

{Ik}∞k=1 such that I = ∪∞k=1Ik. This implies that

R = (∪∞k=1Ik)︸ ︷︷ ︸
I

∪ (∪q∈Q{q})︸ ︷︷ ︸
Q

.

This implies R is the countable union of closed sets. Hence, by the Baire Category Theorem, one

of these closed sets has non-empty interior. Since the interior of {q} is empty for each q ∈ Q, there

exists i ∈ N such that Ii has nonempty interior. Thus, there is r > 0 and x ∈ Ii such that the ball

B(x, r) ⊂ Ii. Since Q is dense in R, there exists q ∈ Q such that q ∈ B(x, r). This implies q ∈ I, a

contradiction. Hence I is not the countable union of closed sets. �

W02.05: a) Let f : U → Rk be a function on an open set U ⊂ Rn. Define what it means for f to be

differentiable at a point x ∈ U .

b) State carefully the Chain Rule for the composition of differentiable functions of several variables.

c) Prove the Chain Rule you stated in b).

Proof:

a) Let x ∈ U . If there exists a linear transformation L : Rn → Rm such that

lim
h→0

‖f(x+ h)− f(x)− L(h)‖
‖h‖

= 0,

then f is differentiable at x and we write f ′(x) = A. If f is differentiable at every x ∈ U , then

f is differentiable in U .

b) Suppose U ⊆ Rn is open and f : U → Rk is differentiable at x0 ∈ U , g maps the open set
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f(U) into Rm, and g is differentiable at x0. Then the composition F : U → Rm defined by

F (x) = g(f(x)) is differentiable at x0 and F ′(x) = g′(f(x0))f ′(x0).

c) Let y0 = f(x0), A = f ′(x0) and B = g′(y0), and define

u(h) = f(x0 + h)− f(x0)−A(h) and v(t) = g(y0 + t)− g(y0)−B(t),

for all h ∈ Rn and t ∈ Rk for which f(x0 + h) and g(y0 + t) are defined. Now define

ε(h) = ‖u(h)‖/‖h‖ and η(t) = ‖v(t)‖/‖t‖ and note, by the differentiability of f and g, ε(h)→ 0

as h→ 0 and η(t)→ 0 as t→ 0. Given h, let t = f(x0 + h)− f(x0). Then

‖t‖ = ‖A(h) + u(h)‖ ≤ (‖A‖+ ‖ε(h)‖)‖h‖ ⇒ 1

‖h‖
≤ ‖A‖+ ‖ε(h)‖

‖t‖

and
‖F (x0 + h)− F (x0)−B(A(h))‖ = ‖g(y0 + t)− g(y0)−B(A(h))‖

= ‖B(k −A(h)) + v(t)‖

= ‖B(u(h)) + v(t)‖

≤ ‖B‖‖u(h)‖+ ‖v(t)‖.

Since t = [f(x0 + h)− f(x0)]→ 0 as h→ 0, it follows that

lim
h→0
‖F (x0 + h)− F (x0)−B(A(h))‖ ≤ lim

h→0
‖B‖‖u(h)‖

‖h‖
+
‖v(t)‖
‖h‖

≤ lim
h→0
‖B‖ · ε(h) + (‖A‖+ ‖ε(h)‖) · η(t)

= ‖B‖ · 0 + (‖A‖+ 0) · 0

= 0

and we have obtained the desired limit.

�

W02.06: a) State some reasonably general condition on a function f : R2 → R under which

∂

∂x

(
∂f

∂y

)
=

∂

∂y

(
∂f

∂x

)
.

b) Prove the formula under the conditions you stated.

Proof:

a) The formula holds if
∂f

∂x
and

∂f

∂y
exists everywhere and are continuous everywhere, and
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∂

∂x

(
∂f

∂y

)
and

∂

∂y

(
∂f

∂x

)
also exists and are continuous everywhere.

b) See F01.5.

�

W02.09: Let V be a real vector space and T : V → V be a linear transformation. Let λ1, . . . , λm be

distinct eigenvalues of T . Let 0 6= vi be an eigenvector of T with eigenvalue λi for 1 ≤ i ≤ m. Show that

{v1, . . . , vm} is linearly independent.

Proof:

See F01.10. �

W02.10: Let V be a finite dimensional complex inner product space and f : V → C a linear functional.

Show that there exists a vector w ∈ V such that f(v) = 〈v, w〉 for all v ∈ V .

Proof:

Let e1, . . . , em be an orthonormal basis for V . Then the basis of the dual V ∗ = {f : V →
C | f is linear} is given by φ1, . . . , φm where φi(ej) = δij with δij denoting the Kronecker

delta. For a given f ∈ V ∗, it follows that there exists unique scalars a1, . . . , am ∈ C such that

f = a1φ1 + · · ·+ amφm. Now let v ∈ V . Then there similarly exists unique scalars b1, . . . , bm ∈ C
such that v = b1e1 + · · · bmem. Then, using linearity and the definition of each φj ,

f(v) = f

(
m∑
i=1

biei

)
=

m∑
j=1

ajφj

(
m∑
i=1

biei

)
=

m∑
j=1

m∑
i=1

biajφj(ei)=
m∑
j=1

m∑
i=1

biajδij =
m∑
j=1

bjaj .

Define w := a1e1 + · · ·+ amem ∈ V . Since the ei are orthonormal, 〈ei, ej〉 = δij and so

〈w, v〉 = 〈
m∑
j=1

bjej ,

m∑
i=1

aiei〉=
m∑
j=1

m∑
i=1

bjai 〈ej , ei〉 =

m∑
j=1

m∑
i=1

bjaiδij=

m∑
j=1

bjaj = f(v),

completing the proof. �

W02.11: Let V be a finite dimensional complex inner product space and T : V → V a linear transformation.

Prove that there exists an orthonormal ordered basis for V such that matrix representation A in this basis

is upper triangular, i.e., Aij = 0 if i < j.

Proof:

We proceed by induction. Of course, if n = 1, then picking any unit vector in V gives an orthonormal
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basis and we are done. For the inductive step, presume each k dimensional vector space has an upper

triangular representation with respect to a linear operator on it. Then suppose dim(V ) = k + 1.

Since V is complex, each operator T has an eigenvalue λ. This follows from the fact that C is

algebraically closed. Let Eλ denote the eigenspace corresponding to λ. Then E⊥λ = range(T − λI).

Because (T−λI) is not one-to-one, it cannot be surjective and so dim(E⊥λ ) < dim(V ). Furthermore,

E⊥λ is invariant under T since for any u ∈ E⊥λ we have Tu = (T −λI)u+λu where (T −λI)u ∈ E⊥λ ,

by definition, and λu ∈ E⊥λ since E⊥λ is closed under scalar multiplication. Now the restriction

of T to E⊥λ provides an operator on this subspace and so, by the induction hypothesis, there is

an orthonormal basis e1, . . . , em of E⊥λ with respect to the restriction of T to U , which has an

upper triangular matrix, i.e., for each j = 1, 2, . . . ,m we have Tej ∈ span{e1, . . . , ej}. Now extend

e1, . . . , em to an orthonormal basis e1, . . . , em, v1, . . . , vn of V where k+1 = m+n. For k = 1, . . . , n

we have Tvk = (T − λI)vk + λvk. By definition of E⊥λ , (T − λI)vk ∈ E⊥λ and so this shows

Tvk ∈ span{e1, . . . , em, v1, . . . , vk}. Then, in turn, implies T has an upper triangular matrix with

respect to e1, . . . , em, v1, . . . , vk and we have closed the induction. �

S02.01: Prove that the closed interval [0, 1] is connected.

Proof:

By way of contradiction, suppose there exist disjoint non-empty open sets A and B relative to [0, 1]

such that A ∪ B = [0, 1]. Without loss of generality, suppose 1 ∈ B. Clearly, [0, 1] is bounded.

Thus, A is bounded and by the least upper bound principle, we can define c = sup(A). Since [0, 1]

is closed, c ∈ [0, 1].

First suppose c ∈ A. Then c < 1 since 1 ∈ B and A ∩ B = ∅. And, since A is open, there exists

ε > 0 so that B(c, ε) ∩ [0, 1] ⊆ A. But, then c+ min{ε, 1− ε} ∈ A, which contradicts the fact that

c = sup(A).

Now suppose c ∈ B. Note then c 6= 0 since then we’d have A = {0}, which is closed. Thus,

c ∈ (0, 1]. Since B is open, there exists ε > 0 such that B(c, ε)∩ [0, 1] ⊆ B. But then c−min{ε, c}
is an upper bound for A, again contradicting that c = supA > 0. Hence [0, 1] must be connected.

�

S02.02: Show that the set Q of rationals in R is not expressible as the intersection of a countable collection

of open subsets of R.

Proof:

By way of contradiction, suppose that Q = ∩∞n=1Un where Un ⊂ R is dense and open for each
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n ∈ N. Then Q ⊂ Un for each n and, because Q is dense, so also must be Un. Since R is open and

dense in R, R\{q} is open and dense in R for each q ∈ Q. This set is open since if Br(x) is a ball

in R about x ∈ R of radius r > 0, then picking rx = min{r, ‖x− q‖} yields Brx(x) ⊂ R. Thus,

∅ = I ∩Q =

⋂
q∈Q

R\{q}

 ∩ ∞⋂
n=1

Un

is a countable intersection of dense open sets. But, the Baire Category Theorem implies that ∅
must be dense in R, a contradiction.

�

S02.03: Suppose that X is a compact metric space (in the covering sense of the word compact). Prove

that every sequence {xn | xn ∈ X, n = 1, 2, 3, . . . , } has a convergent subsequence. [Prove this directly.

Do not just quote a theorem.]

Proof:

Let X be a compact metric space and {xn}∞n=1 ⊂ X. The collection ∪x∈XB(x, 1) of open balls

of radius 1 in X forms an open cover of X. Since X is compact, it follows that there is a finite

subcover ∪J1j=1B(xj , 1) that covers X. Let `1 denote the index of a ball B(x`1 , 1) that contains

infinitely many points from the sequence {xn}∞n=1. Existence of such a ball follows from the pigeon-

hole principle. Let S1 be the set of all indices in this ball B(x`1 , 1). Now form an open covering

∪x∈XB(x, 1/2) of X. Then there is a finite subcover ∪J2j=1B(xj , 1/2). Pick an index `2 for which

B(x`1 , 1) ∩B(x`2 , 1/2) contains infinitely many points from {xn}∞n=1. Then define S2 to be the set

of all indices in B(x`1 , 1) ∩ B(x`2 , 1/2) and note S2 ⊆ S1. Continuing in an inductive fashion, for

each k ∈ N we can find an `k so that ∩ki=1B(x`i , 1) has infinitely many points from {xn}∞n=1 and

define Sk to be the set of indices in this intersection so that Sk ⊆ Sk−1 ⊆ · · · ⊆ S1.

We define a convergent subsequence as follows. Let n1 ∈ S1. Then, for each k ∈ N greater than

1, pick nk ∈ Sk with nk > nk−1. Note such a choice is possible since, by construction, each Sk is

infinite. Let ε > 0 be given. By the Archimedean property of R, there exists N ∈ N such that

1/N ≤ ε/2. For j, k ≥ N , observe that xnj , xnk ∈ B(x`N , 1/N) and so

d(xnj , xnk) ≤ d(xnj , x`N ) + d(xnk , x`N ) ≤ ε/2 + ε/2 = ε,

which implies the subsequence {xnk}∞k=1 is Cauchy. By the Heine-Borel theorem, X is compact

if and only if it is complete and totally bounded. By the definition of completeness, each Cauchy

sequence in X converges to a limit in X. Hence {xnk}∞k=1 converges. �
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S02.06: Suppose f : R3 → R is a continuously differentiable function with ∇f 6= 0 at 0 ∈ R3. Show

that there are two other continuously differentiable functions g : R3 → R and h : R3 → R such that the

function

(x, y, z) 7→ (f(x, y, z), g(x, y, z), h(x, y, z))

from R3 to R3 is one-to-one on some neighborhood of 0 ∈ R3.

Proof:

Since ∇f(0) 6= 0, this can be extended to a basis ∇f(0), v1, v2 of R3. Then define g : R3 → R and

h : R3 → R, respectively, by

g(r) = 〈v1, r〉 and h(r) = 〈v2, r〉 ∀ r ∈ R3

where 〈·, ·〉 denotes the standard scalar product in R3. Then g and h are continuously differentiable.

Indeed, ∇g(r) = v1 and ∇h(r) = v2 for all r ∈ R3. Define φ : R3 → R3 by φ(x, y, z) =

(f(x, y, z), g(x, y, z), h(x, y, z)). Then

φ′(0) =

 ∇f(0)

∇g(0)

∇h(0)

 =

 ∇f(0)

v1

v2

 .
Since the rows of φ′(0) are linearly independent, φ′(0) is invertible. Moreover, φ is continuously

differentiable since it is the composition of f , g, and h, which are each continuously differentiable.

It follows from the inverse function theorem that there exists open subsets U, V ⊆ R3 such that

0 ∈ U and φ(0) ∈ V where φ is one-to-one on U and φ(U) = V . That is, there is a neighborhood

U of 0 where φ is one-to-one. This completes the proof. �

S02.8: Let V be a finite dimensional real vector space. Let W ⊂ V be a subspace and W 0 := {f : V →
F linear | f = 0 on W}. Prove that dim(V ) = dim(W ) + dim(W 0).

Proof:

Let e1, . . . , em be an orthonormal basis for W . Then extend this to a basis e1, . . . , en of V with

n ≥ m so that dim(W ) = m and dim(V ) = n. Then all we must show is that dim(W 0) = n −m.

The dual basis of e1, . . . , en for V ∗ = {f : V → R | f is linear} is given by φ1, . . . , φn where

φi(ej) = δij where δij denotes the Kronecker delta. Let f ∈ W ∗ ⊂ V ∗. Then there are unique

scalars a1, . . . , an ∈ R such that f = a1φ1 + · · · + anφn. Similarly, let w ∈ W . Then there are

unique scalars b1, . . . , bm ∈ R such that w = b1e1 + · · · bmem. Using the linearity of f , it follows
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that

f(w) =

n∑
j=1

ajφj(v)=

n∑
j=1

ajφj(b1e1 + · · · bmem) =

m∑
j=1

ajφj(bjej)=

m∑
j=1

ajbj .

where we note

φj(b1e1 + · · · bmem) = b1φj(e1) + · · · bmφj(em) = 0 + · · ·+ 0 + bjφj(ej) + 0 + · · ·+ 0 = bj .

But, f = 0 on W and so
∑m

j=1 ajbj = 0. Since this holds for each w ∈ W , we must have aj = 0

for j = 1, . . . ,m. Hence each f ∈ W ∗ is of the form f = am+1φm+1 + · · · + anφn, which implies

W ∗ = span{φm+1, . . . , φn} and so dim(W ∗) = n−m, as desired. �

S02.10: Let V be a complex inner product space and W a finite dimensional subspace. Let v ∈ V . Prove

that there exists a unique vector vW ∈W such that

‖v − vW ‖ ≤ ‖v − w‖ (29)

for all w ∈W . Deduce that equality holds iff w = vW .

Proof:

Let e1, . . . , em be an orthonormal basis forW . Extend this to an orthonormal basis e1, . . . , em, f1, . . . , fn

for V . Let v ∈ V and define vW to be the projection of v into W , i.e., define

vW := 〈v, e1〉 e1 + · · ·+ 〈v, em〉 em

where 〈·, ·〉 denotes the inner product. Then vW ∈W . Also, (v−vW ) ∈W⊥ since 〈(v − wW ), ej〉 =

〈v, ej〉 − 〈v, ej〉 = 0 for j = 1, . . . ,m. For each w ∈W it follows that

‖v − vW ‖2 ≤ ‖v − vW ‖2 + ‖vW − w‖2 = ‖(v − vW ) + (vW − w)‖2 = ‖v − w‖2, (30)

where the first inequality holds because 0 ≤ ‖vW − w‖2, the following equality holds from the

Pythagorean Theorem (which applies because v − vW ∈ W⊥ and vW − w ∈ U), and the last

equality holds by simple algebra. Taking square roots gives the desired inequality. Lastly, our

inequality above is an equality precisely when ‖vW − w‖ = 0, which occurs iff vW = w. �
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2003

S03.2: Prove that if a1, a2, . . . is a sequence of real number with

+∞∑
j=1

|aj | <∞, (31)

then lim
N→∞

∑N
j=1 aj exists.

Proof:

The Cauchy Convergence Criterion for series states that the series
∑∞

j=1 aj converges iff for each

ε > 0, there is an index N such that

|an+1 + · · ·+ an+k| < ε for all n ≥ N and k ∈ N. (32)

From the triangle inequality, we know∣∣∣∣∣∣
n+k∑
j=n+1

aj

∣∣∣∣∣∣ ≤
n+k∑
j=n+1

|aj |. (33)

And because
∑+∞

j=1 |aj | converges, it follows from the Cauchy Convergence Criterion that the

sequence of partial sums for this series is a Cauchy sequence. So, our above inequality implies the

sequence of partial sums for the series
∑∞

j=1 aj is also a Cauchy sequence. Hence, again using the

Cauchy Convergence Criterion,
∑∞

j=1 aj converges. �

2004

S04.2: Is f(x) =
√
x uniformly continuous on [0,∞)? Prove your assertion.

Proof:

We claim f(x) =
√
x is uniformly continuous on [0,∞]. To verify this, we must show that if ε > 0

is given, then there exists δ > 0 such that |f(x) − f(y)| ≤ ε whenever x, y ∈ [0,∞) are such that

|x− y| ≤ δ. So, let ε > 0 be given. Then define δ := ε2 and note that |
√
x−√y| ≤ |

√
x+
√
y| since

√
y is positive. Then

|
√
x−√y|2 ≤ |

√
x−√y||

√
x+
√
y| = |x− y| ≤ δ = ε2. (34)

Taking the square root, we obtain |
√
x−√y| ≤ ε. Hence we identified δ > 0 such that the desired

relation holds, and so f(x) =
√
x is uniformly continuous. �
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F04.4: Suppose (M,ρ) is a metric space, x, y ∈ M , and that {xn} is a sequence in this metric space such

that xn → x. Prove that ρ(xn, y)→ ρ(x, y).

Proof:

Let ε > 0 be given. We must find N ∈ N such that for all n ≥ N we have

|ρ(xn, y)− ρ(x, y)| ≤ ε. (35)

Let n ∈ N. Suppose ρ(x, y) ≥ ρ(xn, y). Then, by the triangle inequality,

0 ≤ ρ(x, y)− ρ(xn, y) ≤ (ρ(x, xn) + ρ(xn, y))− ρ(xn, y) = ρ(x, xn). (36)

Alternatively, if ρ(x, y) < ρ(xn, y), then

0 < ρ(xn, y)− ρ(x, y) ≤ (ρ(xn, x) + ρ(x, y))− ρ(x, y) = ρ(xn, x). (37)

In either case, we have

|ρ(xn, y)− ρ(x, y)| ≤ |ρ(xn, x)|. (38)

Since xn → x, we can pick N ∈ N such that ρ(xn, x) ≤ ε whenever n ≥ N . Using (38), it follows

that |ρ(xn, y)− ρ(x, y)| ≤ |ρ(xn, x)| ≤ ε whenever n ≥ N . Hence we have found N such that (35)

holds and we are done. �

F04.6: The Bolzano-Weirstrass Theorem in Rn states that if S is a bounded closed subset of Rn and

{xk} is a sequence which takes values in S, then {xk} has a subsequence which converges to a point in S.

Assume this statement is known in the case where n = 1, and use it to prove the statement in case n = 2.

Proof:

Let S ⊆ R2 be closed and bounded. We must show that each sequence {pn} in S has a subsequence

that converges to a point p ∈ S. Note for each pn, we can write (xn, yn) = pn for xn, yn ∈ R. And,

through the boundedness of S (and therefore each pn), each xn and yn must also be bounded.

Assuming the theorem holds for n = 1, we know there must exists a subsequence {xf(n)} that

converges where f : N→ N with f(n) ≥ n for each n ∈ N. Also, since {yf(n)} is bounded, we can

find a convergent subsequence {yg(f(n))} of {yf(n)} where g : N→ N with g(n) ≥ n for each n ∈ N.

Of course, since {xg(f(n))} is a subsequence of the convergent sequence {xf(n)}, it also converges.

It then follows that each coordinate of the sequence {pg(f(n))} converges, which implies that this

subsequence of {pn} is itself convergent. Moreover, since S is closed, the limit of {pg(f(n))} is in S.
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This completes the proof. �

S04.4: Are there infinite compact subsets of Q? Prove your assertion.

Proof:

We claim there are infinite compact subsets of Q. Let k ∈ Z and define Sk = {k} ∪ {k + 1/n |
n = 1, 2, . . .}. Since k ∈ Q and Q is a field, we know k + 1/n ∈ Q and so Sk ⊂ Q. Moreover, Sk

is countably infinite by definition. All that remains is to show Sk is compact. Let U = {Ui} be

an open cover of Sk. Then there exists some U0 such that k ∈ U0. Since U0 is open, there exists

r > 0 such that B(k, r) ⊆ U0. Furthermore, by the Archimedean property of R, there exists a

positive integer N such that 1/N ≤ r. Then for any n ≥ N we have 1/n ≤ 1/N ≤ r, which implies

k + 1/n ∈ B(k, r) ⊆ U0. For each i = 1, . . . , N − 1, there exists some open set Ui ∈ U containing

k + 1/i. Then the collection {U0, . . . , UN−1} is a finite subcover of U that covers Sk. Hence Sk is

an infinite compact subset of Q. �
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F04.08: Let A = (aij) be a real n× n symmetric matrix and let Q(v) = v · Av (ordinary dot product) be

the associated quadratic form defined for v = (v1, . . . , vn) ∈ Rn.

a) Show that ∇Q(v) = 2Av where ∇Q(v) is the gradient of the function at Q.

b) Let M be the minimum value of Q(v) on the unit sphere Sn := {v ∈ Rn : ‖v‖ = 1} and let u ∈ Sn

be a vector such that Q(u) = M . Prove, using Lagrange multipliers, that u is an eigenvector of A

with eigenvalue M .

Proof:

a) Observe that

Q(v) = v ·Av =

n∑
j=1

vj(Av)j =
n∑
j=1

vj

(
n∑
i=1

Ajivi

)
=

n∑
i,j=1

Aijvivj . (39)

This implies

∂xkQ(v) = ∂xk

n∑
i,j=1

Aijvivj

=

n∑
i,j=1

Aij∂xk(vivj)

=
n∑

i,j=1

Aij(δikvj + viδjk)

=
n∑
j=1

Akjvj +
n∑
i=1

Aikvi

=
n∑
j=1

Akjvj +
n∑
i=1

Akivi

= 2(Av)k

(40)

where δij denotes the Kronecker delta. Thus,

∇Q(v) = (∂x1Q(v), . . . , ∂xnQ(v)) = (2(Av)1, . . . , 2(Av)n) = 2Av. (41)

b) Define g(v) = 〈v, v〉 − 1 and observe g(v) = 0 if and only if v ∈ Sn. Lagrange’s theorem

for multipliers then states that if Q and g have continuous first derivatives and Q has an

extremem point u along the curve g = 0, then there is a λ ∈ R such that ∇Q(u) = λ∇g(u).

Note, taking I as the identity, the above computations in a) show ∇g(v) = 2v. Thus,

∇Q(u) = λ∇g(u) ⇔ 2Au = 2λu, (42)
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which implies u is an eigenvalue of A with eigenvalue λ. Then

M = Q(u) = u ·Au = u · λu = λ(u · u) = λ. (43)

Thus, we conclude u is an eigenvector of A with eigenvalue M = λ, as desired.

�
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F04.09: Let T : Cn → Cn be a linear transformation and P a polynomial such that P (T ) = 0. Prove that

every eigenvalue of T is a root of P .

Proof:

Write P (x) = a0 + a1x+ · · ·+ amx
m for some a0, . . . , am ∈ C. Now let λ ∈ C be an eigenvalue of

T . Then there is v ∈ Cn with v 6= 0 such that Tv = λv. So, suppose T pv = λpv for some p ∈ Z+.

Then T p+1v = T p(Tv) = T p(λv) = λT pv = λp+1v. By induction, this implies T kv = λkv for each

k ∈ Z+. Thus,

0 = p(T )v = (a0I + a1T + · · ·+ amT
m)v = (a0 + a1λ+ · · ·+ amλ

m)v = P (λ)v. (44)

where we note T 0 = I. Since v 6= 0, it follows that P (λ) = 0. Therefore, we conclude each

eigenvalue of T is a root of P . �
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F04.10: Let V = Rn and T : V → V be a linear transformation. For λ ∈ C, the subspace

V (λ) =
{
v ∈ V : (T − λI)jv = 0 for some j ≥ 1

}
(45)

is called a generalized eigenspace.

a) Prove there exists a finite number M such that V (λ) = ker
(
(T − λI)M

)
.

b) Prove that if λ 6= µ, then V (λ) ∩ V (µ) = {0}. Hint: use the following equation by raising both sides

to a high power.
T − λI
µ− λ

+
T − µI
λ− u

= I. (46)

Solution:

a) We first provide two lemmas:

Lemma 1: {0} = ker(T 0) ⊂ ker(T 1) ⊂ ker(T 2) ⊂ · · · .
Proof:

We proceed by induction. Suppose v ∈ ker(T k) for some k ≥ 0. Then T k+1(v) =

T (T kv) = T (0) = 0 where the final equality holds by linearity of T . The result follows

by induction. �

Lemma 2: If there is a nonnegative integer m such that ker(Tm) = ker(Tm+1), then

ker(Tm) = ker(Tm+k) for all nonnegative integers k.

Proof:

The base case is given. Suppose the statement holds for k > 1 and let v ∈ ker(Tm+k+1).

This implies

0 = Tm+k+1(v) = Tm+1(T kv) ⇒ T kv ∈ ker(Tm+1). (47)

But, ker(Tm+1) = ker(Tm). Hence

Tm+k(v) = Tm(T kv) = 0 ⇒ v ∈ ker(Tm+k). (48)

This shows ker(Tm+k+1) ⊂ ker(Tm+k). Lemma 1 gives ker(Tm+k) ⊂ ker(Tm+k+1),

from which we obtain ker(Tm+k+1) = ker(Tm+k) = ker(Tm). This closes the induction.

�
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We now prove a). By way of contradiction, assume the hypothesis is false. Then

ker((T − λI)0) ( ker((T − λI)1) ( · · · ( ker((T − λI)n+1) (49)

where the inclusions follow from Lemma 1 and they are strict by our assumption and Lemma

2. This implies dim(T k+1) ≥ dim(T k)+1 for each k, and so dim(Tn+1) ≥ n+1 > n = dim(V ).

This contradicts the fact that Tn+1 is a subspace of V . Thus, the claim does hold. This further

shows V (λ) = {v ∈ V : (T − λI)nv = 0} = ker((T − λI)n).

b) From a), we have V (λ) = ker((T−λI)n) and V (µ) = ker((T−µI)n). Now let v ∈ V (λ)∩V (µ).

It suffices to show v is necessarily the zero vector, which we does as follows. Using the given

relation, observe

v = I2nv =

(
T − λI
µ− λ

+
T − µI
λ− µ

)2n

v (50)

But, on the right hand side, each of the terms (T − λI) and (T − µI) in the expansion are

raised to at least a power of n and (T − λI)nv = (T − µI)nv = 0 . Thence

v =

(
T − λI
µ− λ

+
T − µI
λ− µ

)2n

v = 0. (51)

�
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2005

S05.6: Consider the set of f : [0, 1]→ R that obey

|f(x)− f(y)| ≤ |x− y| and

∫ 1

0
f(x) dx = 1. (52)

Show that this is a compact subset of C([0, 1]).

Solution:

The set of f , denoted F , is uniformly bounded. By way of contradiction, suppose otherwise. Then

there is f ∈ F and a x ∈ [0, 1] such that |f(x)| ≥ 3. This implies for y ∈ [0, 1] that

|f(y)− f(x)| ≤ |y − x| ≤ 1 ⇒ |f(y)| ≥ |f(x)| − 1 ≥ 2 (53)

where the right hand side follows by applying the reverse triangle inequality. Assume f(y) ≥ 2.

Then ∫ 1

0
f(x) dx ≥

∫ 1

0
2 dx = 2 > 1, (54)

a contradiction. Similarly, if f(y) ≤ −2, we get a contradiction. Hence ‖f‖∞ ≤ 3 for f ∈ F .

To show F is compact, we show it is sequentially compact. Let {fn} ⊂ F be a sequence. We

must show there is a subsequence {fn(m)}∞m=1 of {fn}∞n=1 that converges to a limit g ∈ F . We first

construct the subsequence {fn(m)}∞m=1 by a diagonalization argument. Let τ : Z+ → [0, 1] ∩ Q
be an enumeration of the rational numbers in [0, 1]. Since ‖fn‖∞ ≤ 3, fn(τ(1)) ∈ [−3, 3] for each

n ∈ Z+. Because [−3, 3] is compact, this sequence has a convergence subsequence, say, {fn1,k
(τ(1))}.

Proceeding inductively, suppose {fnm,k(τ(m))}∞k=1 converges for m ∈ Z+. By the compactness

of [−3, 3], there is a subsequence {fnm+1,k
}∞k=1 of {fnm,k}∞k=1 such that {fnm+1,k

(τ(m + 1))}∞k=1

converges. Now define the sequence n(m) := nm,m. For each m ∈ Z+ there are, at most, m − 1

terms in the sequence {fn(m)(τ(m))}∞m=1 not contained in the sequence {fnm,k(τ(m))}∞k=1, namely,

the first m− 1 terms. Hence

lim
m→∞

fn(m)(τ(m)) = lim
n→∞

fnm,k(τ(m)), (55)

and so the limit exists. This implies the sequence {fn(m)} converges at each rational x ∈ [0, 1].

Now cover [0, 1] by the open balls B(x, ε/3) with rational x ∈ [0, 1]. Since [0, 1] is compact and the

rationals are dense in [0, 1], there is a finite subcover, i.e., there are x1, . . . , xm ∈ [0, 1] ∩Q such
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that

[0, 1] ⊂
m⋃
i=1

B(xi, ε/3). (56)

Let z ∈ [0, 1]. Then there is i ∈ {1, . . . ,m} such that |z − xi| < ε/3. Hence

|f(z)− f(xi)| ≤ |z − xi| <
ε

3
. (57)

Also, by the convergence of {fn(m)(xi)}∞m=1, there is an Ni such that

|fn(k)(xi)− fn(m)(xi)| <
ε

3
∀ k,m ≥ Ni. (58)

Set N := max{N1, . . . , Nm}. Then, using the triangle inequality,

∀ k,m ≥ N, |fnk(z)− fnm(z)| ≤ |fnk(z)− fnk(xi)|+ |fnk(xi)− fnm(xi)|+ |fnm(xi)− fnm(z)|

<
ε

3
+
ε

3
+
ε

3

= ε.

(59)

Since fn(m)(z) ∈ R and R is complete, the sequence converges. Moreover, it is uniform since this

holds for arbitrary z ∈ [0, 1]. Define g : [0, 1]→ R as the pointwise limit, i.e., g(z) := lim
m→∞

fn(m)(z)

for z ∈ [0, 1]. Since the convergence is uniform, we may write∫ 1

0
g(x) dx =

∫ 1

0
lim
m→∞

fn(m)(x) dx = lim
m→∞

∫ 1

0
fn(m)(x) dx = lim

m→∞
1 = 1. (60)

And, for m ≥ N ,

|g(z)− g(y)| ≤ |g(z)− fn(m)(z)|+ |fn(m)(z)− fn(m)(y)|+ |fn(m)(y)− g(y)|

≤ ε

3
+ |z − y|+ ε

3

≤ |z − y|+ ε.

(61)

Hence |g(z) − g(y)| ≤ |z − y| + ε. Since none of the terms in this final inequality depend upon ε,

we let ε −→ 0 to obtain |g(z)− g(y)| ≤ |z − y|, thereby concluding g ∈ F . Thus, F is sequentially

compact. This completes the proof. �
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S05.12: Let (X, d) be a metric space. Prove that the following are equivalent:

a) There is a countable dense set.

b) There is a countable basis for the topology.

Proof:

First suppose there exists a countable dense subset E ⊆ X. Let {q1, q2 . . .} be an enumeration of

E. We claim that the collection of open balls U = {B(qi, 1/j) | (i, j) ∈ N × N} is countable

and forms a basis for the topology. Indeed, U is equinumerous with N × N, which is countable

since each (i, j) ∈ N × N can be mapped to (i + j) ∈ N while each k ∈ N can be mapped to

(k, 1) ∈ N×N. To show U forms a basis, we must show that every open set in X can be written as

a union of elements of U . So let V ⊆ X be open and v ∈ V . By the definition of open, there exists

a neighborhood N of v in V , i.e., N ⊆ V . Let r denote the radius of the neighborhood N . Now,

by the Archimedean property of R, there exists j ∈ N such that 1/j ≤ r/2. And, by the density

of E in X, there exists qi ∈ E such that v is contained in the open ball about qi of radius 1/j, i.e.,

v ∈ B(qi, 1/j). Let Π denote the collection of indices (i, j) of the balls corresponding to each such

element of V . Then
V ⊂

⋃
(i,j)∈Π

B(qi, 1/j).

And, by the choice of B(qi, 1/j), for each v ∈ V , we have B(qi, 1/j) ⊆ V since for any x ∈ B(qi, 1/j)

we have

d(v, x) ≤ d(v, qi) + d(qi, x) ≤ 1/j + 1/j ≤ r/2 + r/2 = r. (62)

This implies that ⋃
(i,j)∈Π

B(qi, 1/j) ⊆ V.

Hence U forms a basis for the topology.

We now prove the converse. Suppose U = {E1, E2, . . .} is a countable basis for the topology. Now

let x ∈ X and define a neighborhood N of x of some radius r > 0. Since N is open, there must

exist Ei ⊆ N . Since x ∈ Ei, Ei is nonempty, and so we can let qi denote some element in Ei. Then

qi ∈ B(x, r). So, for each x and r > 0, we can identify a qi for which qi ∈ B(x, r). That is, each

x ∈ X is a limit point of the set {qi}∞i=1. Hence there exists a countable dense set in X. �

63 Last Modified: 4/18/2017



Basic Qual Notes Heaton

F05.1: A real number α is algebraic if there exists a finite set a0, . . . , an ∈ Q not all zero such that α is a

root of a0 + a1x+ · · ·+ anx
n. Prove that the set of algebraic numbers is countable.

Proof:

The set of polynomials of degree n with rational coefficients is equinumerous with Qn+1. So, the

set of roots of such polynomials injects into {1, 2, . . . , n} ×Qn+1 since there are n roots for each

degree n polynomial. So, the set of algebraic numbers injects into ∪∞n=1{1, 2, . . . , n} ×Qn+1. This

is a countable union of countable sets where we note {1, 2, . . . , n} ×Qn+1 is countable. This set is

then itself countable. So, the set of algebraic numbers injects in N. And, to see there are at least

as many algebraic numbers as elements in N, note that each α ∈ N is itself algebraic and so N

injects into the set of algebraic numbers. Thus, the set of algebraic numbers is equinumerous with

the natural numbers, i.e., is countable. �
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F05.3: Let Prove that if fj : [0, 1]→ R is a sequence of functions which converges uniformly on [0, 1] to a

(necessarily continuous) function F : [0, 1]→ R, then∫ 1

0
F 2(x) dx = lim

j→∞

∫ 1

0
f2
j (x) dx. (63)

b) Give an example of a sequence {fj : [0, 1] → R}∞j=1 of continuous functions which converges to a

continuous function F : [0, 1]→ R pointwise and for which

lim
j→∞

∫ 1

0
f2
j (x) dx exists, but lim

j→∞

∫ 1

0
f2
j (x) dx 6=

∫ 1

0
F 2(x) dx. (64)

Proof:

a) Let ε > 0 be given. To prove the claim, we must find N ∈ N such that∣∣∣∣∫ 1

0
F 2(x) dx−

∫ 1

0
f2
j (x) dx

∣∣∣∣ < ε ∀ n ≥ N, x ∈ [0, 1]. (65)

Since F is continuous and defined on the closed and bounded interval [0, 1], it follows from the

Extreme value Theorem that F attains a maximum and a minimum on [0, 1]. So, we can let

M1 = max{|F (x)| : x ∈ [0, 1]}. Similarly, each fj attains a maximum and a minimum on [0, 1].

So, let M2 = sup{max{|fj(x)| : x ∈ [0, 1]} : n ∈ N}. Using the uniform convergence of {fj} to

F , we can pick N ∈ N such that |F (x) − fj(x)| < ε/(M1 + M2) whenever n ≥ N, x ∈ [0, 1].

Then ∣∣∣∣∫ 1

0
F 2(x) dx−

∫ 1

0
f2
j (x) dx

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣F 2(x) dx−
∫ 1

0
f2
j (x)

∣∣∣∣ dx

=

∫ 1

0
|F (x)− fj(x)| |F (x) + fj(x)| dx

≤
∫ 1

0
(F (x)− fj(x)| |M1 +M2| dx

<

∫ 1

0

(
ε

M1 +M2

)
|M1 +M2| dx

=

∫ 1

0
ε dx

= ε

(66)

whenever n ≥ N , and we are done.
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b) For each j ∈ N, define fj : [0, 1]→ R by

fj(x) =


0 if x ≥ 1/j,√

4j2x if 0 ≤ x ≤ 1/2j,√
2j − 4j2(x− 1/2j) if 1/2j < x < 1/j.

(67)

Then f2
j (x) forms a tent function of area one, i.e.,

∫ 1
0 f

2
j (x) dx = 1 for each j ∈ N. To show

the convergence of {fj}, let ε > 0 be given and x ∈ [0, 1]. Then by the Archimedean property

of R, we can pick N ∈ N such that 1/N < x. It follows that |fj(x) − 0| = |0 − 0| = 0 < ε

whenever n ≥ N . Thus, for each x ∈ [0, 1], we have that fj(x)→ 0 as j →∞. Consequently,

F (x) = 0 and so
∫ 1

0 F
2(x) dx =

∫ 1
0 0 dx = 0 6= 1 =

∫ 1
0 f

2
j (x) dx. (See F08.3 for a more detailed

answer.)

�

F05.5: Prove that R2 is not a (countable) union of sets Si, i = 1, 2, . . . with each Si being a subset of some

straight line Li in R2.

Proof:

Let {`n}∞n=1 be a collection of straight lines in R2. Then let θn be the angle of the line `n. Since

{θn}∞n=1 is countable, we can pick a real number θ ∈ [0, 2π] that is distinct from all θn. Let ` be a

line at angle θ. Then for all n ∈ N, ` 6= `n. So, (∪∞n=1`n) ∩ ` is countable. But, ` has uncountably

many points. Therefore, ∪∞n=1`n cannot cover ` and R2 is not a (countable) union of straight lines.

�

F05.8: For a real n × n matrix A, let TA : Rn → Rn be the associated linear mapping. Set ‖A‖ =

sup
x∈Rn, ‖x‖≤1

‖TAx‖ using the usual Euclidean norm for xn.

a) Prove that ‖A+B‖ ≤ ‖A‖+ ‖B‖.

b) Use a) to check that the set M of all n × n matrices is a metric space if the distance function d is

defined by d(A,B) = ‖B −A‖.

c) Prove that M is a complete metric space with this “distance function.”

Proof:
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a)

‖A+B‖ = sup
x∈Rn, ‖x‖≤1

‖(TA + TB)x‖

= sup
x∈Rn, ‖x‖≤1

‖TAx+ TBx‖

≤ sup
x∈Rn, ‖x‖≤1

‖TAx‖+ ‖TBx‖

= sup
x∈Rn, ‖x‖≤1

‖TAx‖+ sup
x∈Rn, ‖x‖≤1

‖TBx‖

= ‖A‖+ ‖B‖.

(68)

b) To show that (M,d) forms a metric space we must show that it satisfies the following properties:

i) For any A ∈M , d(A,A) = 0.

ii) For any distinct A,B ∈M , d(A,B) > 0.

iii) For any A,B ∈M , d(A,B) = d(B,A).

iv) For any A,B,C ∈M , d(A,B) ≤ d(A,C) + d(C,B).

Of course, d(A,A) = ‖TA − TA‖ = ‖0‖ = 0. ...

c) To show that M is complete, we must show that every Cauchy sequence in (M,d) converges

to a matrix in (M,d). So, let {An} denote a Cauchy sequence in (M,d).

�

2006

W06.1: Show that for each ε > 0 there exists a sequence of intervals {In} with the properties

Q ⊂
∞⋃
n=1

In and

∞∑
n=1

|In| < ε. (69)

Proof:

Because the rationals are countable, there exists a bijection f : N → Q. Then for each i ∈ N,

define Ii = (f(i)− ε/2i+2, f(i) + ε/2i+2). So, f(i) ∈ Ii and we see

Q ⊂
∞⋃
n=1

In. (70)
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Now, observe that |Ii| =
∣∣f(i) + ε/2i+2 −

(
f(i)− ε/2i+2

)∣∣ = ε/2i+1. This yields that

∞∑
n=1

|In| =
∞∑
n=1

ε

2i+1
=
ε

2

∞∑
n=1

1

2i
=
ε

2
< ε. (71)

Thus, our choice of {In} has the desired properties. �

W06.2: Let {an}n≥1 be a decreasing sequence of positive numbers such that
∑∞

n=1 an = ∞. Under what

condition(s) is the function

f(x) =
∞∑
n=1

(−1)nanx
n (72)

well-defined and left-continuous at x = 1? Carefully prove your assertion.

Proof:

We claim that if lim
n→∞

an = 0, then f is well-defined and left-continuous at x = 1. At x = 1, f(x)

is well-defined since there the alternating series test asserts the sum converges (since lim
n→∞

an = 0).

All that remains is to show f is left-continuous at x = 1.

Let ε > 0 be given. Then we must show that there exists δ > 0 such that whenever y < 1 and

d(1, y) < δ, |f(y)− f(1)| < ε. NOT COMPLETE.

�

W06.4: Consider a decreasing sequence of continuous functions fn : [0, 1]→ R obeying the uniform bound

|fn| ≤ M for some M ∈ (0, 1). Suppose the point-wise limit f(x) = lim
n→∞

fn(x) is continuous on [0, 1].

Prove that fn → f uniformly on [0, 1]. (You may use without proof that [0, 1] is compact as well as

sequentially compact.)

Proof:

Let ε > 0 be given. Then we must find an integer N such that |fn(x)− f(x)| < ε whenever n ≥ N
and x ∈ [0, 1]. Since we have a decreasing sequence of functions, fn+1(x) ≤ fn(x) for all x ∈ [0, 1]

and n ∈ N. Then define gn = fn − f and observe that gn(x) ≥ 0 for all x ∈ [0, 1]. Now define

the sets En = {x ∈ [0, 1] | gn(x) < ε}. Then En is open since it is the preimage of an open set

under the continuous function gn. Since {fn} is monotonically decreasing, so is {gn} and so {En} is

ascending, i.e., En ⊆ En+1 for each n ∈ N. Because {fn} → f , it follows that {gn} → 0 and so the

collection of {En} form an open cover of [0, 1]. By compactness of [0, 1], there is a finite subcover

of this collection that covers [0, 1]. But, the En are ascending and so there is some N ∈ N such

that EN covers [0, 1]. Then for any x ∈ [0, 1], if n ≥ N , x ∈ EN and so |fn(x)− f(n)| < ε, and we

are done.
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�

W06.6: Let −∞ < a < b < ∞. Prove that a continuous function f : [a, b] → R attains all values in

[f(a), f(b)].

Proof:

First, prove that [a, b] is connected. (See above notes.) Then prove the intermediate value theorem.

(See above notes.) �

W06.7: Let V be a complex inner product space and v, w ∈ V . Prove the Cauchy-Schwarz inequality

| 〈v, w〉 | ≤ |v||w|.
Proof:

We wish to write v as a scalar multiple of w added to some vector y ∈ V that is orthogonal

to w. So, observe that v = cw + (v − cw). The vector cw will be orthogonal to v − cw when

0 = 〈cw, v − cw〉 = c 〈w, v〉 − c2 〈w,w〉 = c(〈w, v〉 − c‖w‖2). Avoiding the trivial solution of c = 0,

we see this implies c = 〈v, w〉 /‖w‖2. Then defining

y = v − 〈v, w〉
‖w‖2

w

yields

v =
〈v, w〉
‖w‖2

w + y.

where w and y are orthogonal. Then, by the Pythagorean Theorem, it follows that

‖v‖2 =

∥∥∥∥〈v, w〉‖w‖2
w

∥∥∥∥2

+ ‖y‖2≥
∥∥∥∥〈v, w〉‖w‖2

w

∥∥∥∥2

=

(
〈v, w〉
‖w‖2

)2

‖w‖2=
〈v, w〉2

‖w‖2
.

Taking square roots of both sides gives ‖v‖ ≥ 〈v, w〉 /‖w‖, which implies | 〈v, w〉 | ≤ ‖v‖‖w‖. �

W06.8: Let T : V → W be a linear transformation of finite dimensional real inner product spaces. Show

that there exists a unique linear transformation T t : W → V such that

〈T (v), w〉W = 〈v, T t(w)〉V ∀ v ∈ V,w ∈W

where 〈·, ·〉X is the inner product on X = V or W .

Proof:

Let v1, . . . , vn and w1, . . . , wm be orthonormal bases for V and W , respectively. Let A denote the
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matrix representation of T relative to these basis. By defining T t : W → V to have the matrix

representation At with respect to these basis, we see

〈T (v), w〉 = 〈Av,w〉 = (Av)tw = vtAtw = vt(Atw) = 〈v,Atw〉 = 〈v, T t(w)〉 .

This show that such a linear transformation T t exists.

All that remains is to show uniqueness. Suppose S : W → V also exists and is such that

〈v, T t(w)〉V = 〈T (v), w〉W = 〈v, S(w)〉V ∀ v ∈W,w ∈W.

Then

0 = 〈v, T t(w)〉V − 〈v, S(w)〉V = 〈v, T t(w)− S(w)〉

for each v ∈ V . This is true precisely when T t(w)−S(w) = 0. Using linearity, we have (T t−S)(w) =

0 for each w ∈W . But, this only holds when T t − S = 0, i.e., T t = S. Hence T t is unique. �

W06.9: Let A ∈ M3(R) be invertible and satisfy A = At and detA = 1. Prove that A has one as an

eigenvalue.

Proof:

In order to show that 1 is an eigenvalue of A, it suffices to show that det(A− I) = 0. Since A = At,

it is self-adjoint and, thus, by the real spectral theorem, A is similar to a diagonal matrix. That is,

there exists an orthogonal matrix P and diagonal matrix D such that A = PDP−1. Then, using

the properties of determinants,

det(A) = det(PDP−1) = det(P ) det(D) det(P−1) = det(P ) det(D)
1

det(P )
= det(D) = λ1λ2λ3

where λ1, λ2, λ3 are the eigenvalues of A. Since 1 = det(A) = λ1λ2λ3, we have λ1 = 1/(λ2λ3).

Thus,

det(A− I) = (λ1 − 1) (λ2 − 1)(λ3 − 1) =

(
1

λ2λ3
− 1

)
(λ2 − 1)(λ3 − 1).

If λ2 = 1 or λ3 = 1, then we are done. So, suppose this is not the case. Then we must show

1/(λ2λ3)− 1 = 0, which is equivalent to showing λ2 = 1/λ3. Not Complete.

Hence

1 = det(A) = λ1λ2λ3 = λ1λ2(1/λ2) = λ1

and so λ1 = 1. Hence A must have an eigenvalue of 1.
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Suppose A− I is invertible. The inverse of a matrix is unique and, is here given by
∑∞

k=0A
k since

(I −A)
∞∑
k=0

Ak = (I −A)(I +A+A2 + · · · ) = I + (A−A) + (A2 −A2) + · · · = I.

�
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S06.1:

a) Define precisely the notion of Riemann integrability for a function f on [0, 1].

b) Suppose that fn(x) is a sequence of Riemann integrable functions on [0, 1] such that {fn(x)} converges

uniformly to f(x). Prove that f(x) is Riemann integrable.

Proof:

a) Let P = {I1, . . . , Ik} be a partition of [0, 1]. Then the upper sum U(f, P ) and lower sum

L(f, P ) are, respectively, defined by

U(f, P ) :=
k∑
i=1

(
sup
x∈Ii

f

)
|Ii| and L(f, P ) :=

k∑
i=1

(
inf
x∈Ii

f

)
|Ii|. (73)

The function f(x) is Riemann integrable on [0, 1] provided

inf
P∈Π

U(f, P ) = sup
P∈Π

L(f, P ) (74)

where Π denotes the set of all partitions of [0, 1].

b) Let ε > 0. Then by the uniform convergence of {fn} there is an N ∈ Z+ such that

‖f − fn‖∞ < ε ∀ n ≥ N. (75)

For any partition P = {I1, . . . , Ik} this implies

L(f, P ) :=
k∑
i=1

(
inf
x∈Ii

f

)
|Ii|

≥
k∑
i=1

(
inf
x∈Ii

fN − ε
)
|Ii|

=

k∑
i=1

(
inf
x∈Ii

fN

)
|Ii| − ε

k∑
i=1

|Ii|

= L(fN , P )− ε.

(76)

Since P was chosen arbitrarily, this holds for each P ∈ Π, from which we take the supremum

to obtain

sup
P∈Π

L(f, P ) ≥ sup
P∈Π

L(fN , P )− ε. (77)

In similar fashion, we find

inf
P∈Π

U(f, P ) ≤ inf
P∈Π

U(fN , P ) + ε. (78)
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Then subtracting (77) from (78) we obtain

inf
P∈Π

U(f, P )− sup
P∈Π

L(f, P ) < 2ε (79)

where we have used the fact that fN satisfies (74). By definition of the upper and lower sums,

any partition P gives an upper sum U(f, P ) at least as large as supP∈Π L(f, P ). So, the left

hand side of (79) must be nonnegative. But, we also see (79) is true for all ε > 0 and none of

the terms depend on ε, and so the left hand side must be equal to zero, as desired.

�
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S06.4: The point P = (1, 1, 1) lies on the surface S in R3 defined by

x2y3 + x3z + 2yz4 = 4. (80)

Prove that there exists a differentiable function f(x, y) defined in an open neighborhood N of (1, 1) in R2

such that f(1, 1) = 1 and (x, y, f(x, y)) lies in S for all (x, y) ∈ N .

Proof:

This problem is a routine application of the Implicit Function theorem. First define F : R3 → R

by F (x, y, z) = x2y3 + x3z + 2yz4 − 4. Then

∇F (x, y, z) = (2xy3 + 3x2z, 3x2y2 + 2z4, x3 + 8yz3) ⇒ ∇F (1, 1, 1) = (5, 7, 9). (81)

Since Fz(1, 1, 1) 6= 0, it is invertible and the Implicit Function theorem implies there is a neighbor-

hood N ⊂ R2 of (1, 1) and an open subset V ⊂ R containing 1 and a smooth function f : N → V

such that f(1, 1) = 1 and for (x, y) ∈ N , F (x, y, f(x, y)) is constant (namely, zero). (They probably

want me to prove the Implicit Function theorem in this special case... I’ll come back.) �
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S06.9: Let S be a real n× n symmetric matrix S, i.e., ST = S.

a) Prove the eigenvalues of S are real.

b) State and prove the Spectral Theorem for S.

Proof:

a) Let λ ∈ C be an eigenvalue of S and v be the corresponding eigenvector. Let 〈·, ·〉 be the

scalar product for Cn. Then

λ 〈v, v〉 = 〈λv, v〉 = 〈Av, v〉 = 〈v,A∗v〉 = 〈v,Av〉 = 〈v, λv〉 = λ̄ 〈v, v〉 (82)

where λ̄ denotes the complex conjugate of λ. By hypothesis, v 6= 0 and so 〈v, v〉 = ‖v‖2 > 0,

which implies λ = λ̄. This implies the imaginary part of λ is zero, i.e., λ ∈ R.

b) The real Spectral Theorem states that since S is symmetric, there exists an orthonormal basis

of Rn consisting of eigenvectors of S and each eigenvalue of S is real. The last part of this

was proven in a). We proceed by induction. The case for n = 1 holds trivially. Now suppose...

n− 1 step. Then let S ∈ Rn×n be symmetric.

�
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2007

S07.7: Let f : R→ R be a twice continuously differentiable function with f ′′ uniformly bounded, and with

a simple root x∗ (i.e., f(x∗) = 0, f ′(x∗) 6= 0). Consider the fixed point iteration

xn = F (xn−1) where F (x) = x− f(x)

f ′(x)
.

Show that if x0 is sufficiently close to x∗, then there exists a constant C so that for all n ∈ N, |xn − x∗| ≤
C|xn−1 − x∗|2.

Proof:

Since f ′ is continuous and f ′(x∗) 6= 0, there is a δ > 0 such that |f(x)−f(x∗)| ≤ |f(x∗)/2| whenever

|x − x∗| ≤ δ. Using the reverse triangle inequality, |f ′(x∗)| − |f ′(x)| ≤ |f ′(x∗) − f ′(x)| and so for

such |x− x∗| ≤ δ we have |f ′(x)| ≥ |f ′(x∗)|/2 > 0. Using Taylor’s theorem,

f(x∗) = f(x) + f ′(x)(x∗ − x) + f ′′(ξ)(x∗ − x)2,

for some ξ between x and x∗. For |x− x∗| ≤ δ, this implies

(x∗ − x) +
f(x)− f(x∗)

f ′(x)
= −f

′′(ξ)(x− x∗)2

f ′(x∗)
.

But, f(x∗) = 0 and so

|x∗ − F (x)| =
∣∣∣∣x∗ − (x− f(x)

f ′(x)

)∣∣∣∣= ∣∣∣∣f ′′(ξ)(x− x∗)2

f ′(x∗)

∣∣∣∣ ≤ C|x∗ − x|2
where C denotes the uniform bound for f ′′ divided by |f ′(x∗)|. Let x0 ∈ [x∗ − δ, x∗ + δ]. Then,

using the above, for each n ∈ N, |x∗ − xn| = |x∗ − F (xn−1)| ≤ C|x∗ − xn−1|2. �
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S07.8: Suppose the functions fn are twice continuously differentiable on [0, 1] and satisfy

lim
n→∞

fn(x) = f(x) ∀ x ∈ [0, 1] and ‖f ′n‖ ≤ 1 and ‖f ′′n‖ ≤ 1. (83)

Prove f(x) is continuously differentiable on [0, 1].

Proof:

We first show fn −→ f uniformly. It suffices to show {fn} is uniformly Cauchy. Let ε > 0 be

given and cover [0, 1] by open balls B(x, ε/3) for rational x ∈ [0, 1]. This is possible since the

rationals are dense in [0, 1]. And, since [0, 1] is compact this cover has a finite subcover, i.e., ther

are x1, . . . , xp ∈ [0, 1] ∩Q such that

[0, 1] ⊂
m⋃
i=1

B(xi, ε/3). (84)

Using the pointwise convergence of f , for each xi there is an Ni such that

|fn(xi)− fm(xi)| < ε/3 ∀ n,m ≥ Ni. (85)

Set N := max{N1, . . . , Np}. Let z ∈ [0, 1]. Then there is a j ∈ {1, . . . , p} such that |xj − z| < ε/3.

For n ∈ Z+, the mean value theorem implies there is cn between z and xj such that f ′n(cn)·(xj−z) =

fn(xj)− fn(z). Using the bound on f ′n, we obtain

|fn(xj)− fn(z)| = |f ′n(c)||xj − z| ≤ |xj − z| <
ε

3
. (86)

This implies

|fn(z)− fm(z)| ≤ |fn(z)− fn(xj)|+ |fn(xj)− fm(xj)|+ |fm(xj)− f(z)|

< |z − xj |+
ε

3
+ |z − xj |

<
ε

3
+
ε

3
+
ε

3

= ε

(87)

whenever n,m ≥ N . This holds for every z ∈ [0, 1] and so ‖fn − fm‖ < ε whenever n,m ≥ N , i.e.,

{fn} is uniformly Cauchy. Assume fn −→ g pointwise. Then the above process can be similarly

applied to show fn −→ g uniformly.
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We now show f ′ exists. Using the definition of derivative,

∀ x ∈ [0, 1], f ′(x) = lim
ε→0

f(x+ ε)− f(x)

ε

= lim
ε→0

lim
n→∞

fn(x+ ε)− fn(x)

ε
]

= lim
n→∞

lim
ε→0

fn(x+ ε)− fn(x)

ε
]

= lim
n→∞

f ′n(x)

= g

(88)

where we are able to interchange the limits with ε and n due to the uniform convergence.

Lastly, we show f ′ is continuous. Observe for x, y ∈ [0, 1] that |x− y| < ε/3 implies

|f ′(x)− f ′(y)| ≤ |f ′(x)− f ′N (x)|+ |f ′N (x)− f ′N (y)|+ |f ′N (y)− f(y)|

<
ε

3
+ |x− y|+ ε

3

< ε,

(89)

and we are done. �
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F07.8: Suppose an ≥ 0 and
∑∞

n=1 an =∞. Does it follow that

∞∑
n=1

an
1 + an

=∞? (90)

Proof:

We claim that the above series does, in fact, diverge. To verify this, we first show that if

{an/(1 + an)}∞n=1 → 0, then {an}∞n=1 → 0. So, suppose {an/(1 + an)}∞n=1 → 0 and let ε > 0 be

given. Then there exists N ∈ N such that ∀ n ≥ N ,∣∣∣∣ an
1 + an

∣∣∣∣ ≤ ε

1 + ε
. (91)

Rearranging, we see this implies

an ≤
ε

1 + ε
(1 + an) ⇒ an ≤

ε/(1 + ε)

1− ε/(1 + ε)
= ε. (92)

Hence {an}∞n=1 → 0.

Now suppose that {an}∞n=1 is unbounded. Then {an}∞n=1 9 0 since for each n ∈ N, we can

find n∗ > n such that an∗ ≥ max{a1, . . . , an} + 1. Thus, by the contrapositive of the above,

{an/(1 + an)}∞n=1 9 0, which implies

∞∑
n=1

an
1 + an

=∞. (93)

Alternatively, if {an}∞n=1 is bounded by some M > 0, then

∞∑
n=1

an
1 + an

≥
∞∑
n=1

an
1 +M

=
1

1 +M

∞∑
n=1

an =∞, (94)

and we are done. �

2008

S08.1: Let g ∈ C([a, b]), with g(x) ∈ [a, b] for all x ∈ [a, b]. Prove the following:

a) g has at least one fixed point p in the interval [a, b].
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b) If there is a γ < 1 such that |g(x) − g(y)| ≤ γ|x − y| for all x, y ∈ [a, b], then the fixed point p is

unique and the iteration xn+1 = g(xn) converges to p for any initial guess x0 ∈ [a, b].

Proof:

a) Define f(x) = g(x)−x. Then observe that f(a) ≥ 0 since g(a) ≥ a and f(b) ≤ 0 since g(b) ≤ b.
If g(a) = a or g(b) = b, then we are done. So, suppose this is not the case. Then f(a) > 0 and

f(b) < 0. Then by the Intermediate Value Theorem, there is a p ∈ (a, b) such that f(p) = 0,

which implies g(p) − p = 0 and so g(p) = p. Hence there is at least one fixed point of g in

[a, b].

b) Suppose that there is a γ < 1 such that |g(x) − g(y)| ≤ γ|x − y| for all x, y ∈ [a, b]. Then

|g(xn) − xn| ≤ γ|xn − xn−1| and so, by induction, |xn+1 − xn| = |g(xn) − xn| ≤ γn|x1 − x0|.
We claim {xn}∞n=1 is a Cauchy sequence. Indeed, let ε > 0 be given and note for m > n that

|xm − xn| ≤ |xm − xm−1|+ |xm−1 − xm−2|+ · · ·+ |xn+1 − xn|

≤
m−n∑
j=0

γj |xn+1 − xn|

≤ γn|x1 − x0|
m−n∑
j=0

γj

≤ γn|x1 − x0|
∞∑
j=0

γj

= γn · |x1 − x0|
1− γ

.

But γn → 0 as n → ∞ and so we can pick N ∈ N such that γn · |x1 − x0|
1− γ

≤ ε whenever

n ≥ N , implying that |xm − xn| ≤ ε whenever m > n ≥ N . Hence {xn}∞n=1 is Cauchy and,

because [a, b] ⊂ R is complete, {xn}∞n=1 converges to some limit p ∈ [a, b]. Then

p = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

g(xn) = g(p)

and so g(p) = p. All that remains is to verify p is unique. So, suppose there is also a q such

that g(q) = q. If q 6= p, then

|q − p| = |g(q)− g(p)| ≤ γ|q − p| < |q − p|,

which implies |q − p| < |q − p|, a contradiction. Hence q = p.

�
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S08.2 Let {fn(x)} be a sequence of continuous functions on the interval [0, 1] such that fn(x) ≥ 0 for all n

and x and such that for all x ∈ [0, 1] lim
n→∞

fn(x) = 0. Prove or give a counterexample to the assertion:

lim
n→∞

∫ 1

0
fn(x) dx = 0.

Proof:

We claim the assertion is false and will prove this by providing a counter example. For each n ∈ N,

define

fn(x) =


n2x if x ∈ [0, 1/n],

n− n2(x− 1/n) if x ∈ (1/n, 2/n],

0 if x ∈ (2/n, 1]

Of course, fn is continuous on [0, 1/n), (1/n, 2/n) and (2/n, 1] since fn is linear over each of these

intervals. Thus, to show fn is continuous, we need only verify that the right and left hand limits

agree at x = 1/n and x = 2/n. Indeed,

lim
x→1/n−

f(x) = n2(1/n)= n = n− n2(0)= n− n2(1/n− 1/n) = lim
x→1/n+

f(x),

and

lim
x→2/n−

f(x) = n− n2(2/n− 1/n)= n− n2(1/n) = n− n= 0 = lim
x→2/n+

f(x).

Hence {fn} is a sequence of continuous functions. Moreover, we claim lim
n→∞

fn(x) = 0 for each

x ∈ [0, 1]. Of course, fn(0) = 0 for all n ∈ N. To show this is true for x ∈ (0, 1], let ε > 0 be given.

Then by the Archimedean property of R we can pick N ∈ N such that 1/N ≤ x. Consequently,

|fn(x)− 0| = |0− 0| ≤ ε ∀ n ≥ N.
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Now observe that∫ 1

0
fn(x) dx =

∫ 1/n

0
n2x dx+

∫ 2/n

1/n
n− n2(x− 1/n) dx+

∫ 1

2/n
0 dx

=

∫ 1/n

0
n2x dx−

∫ 2/n

1/n
n2(x− 1/n) dx+

∫ 2/n

1/n
n dx

=

∫ 1/n

0
n2x dx−

∫ 1/n

0
n2x dx+ n(1/n)

= 1.

Hence lim
n→∞

∫ 1

0
fn(x) dx = lim

n→∞
1 = 1 6= 0.

�
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S08.3: Assuming that f ∈ C4[a, b] is real, derive a formula for the error of the approximation E(h) when

the second derivative is replaced by the finite-difference formula

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2

and h is the mesh size. Assume that x, x+ h, x− h ∈ (a, b).

Proof:

By Taylor’s Theorem, we can expand f about x and evaluate at x+ h and x− h to find

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

f (3)(x)

6
h3 +

f (4)(ξ1)

24
h4

and

f(x− h) = f(x)− f ′(x)h+
1

2
f ′′(x)h2 − f (3)(x)

6
h3 +

f (4)(ξ2)

24
h4

where ξ1 is between x and x+ h and ξ2 is between x and x− h. Adding these equations together

and then subtracting 2f(x) from each side gives

f(x+ h)− 2f(x) + f(x− h) = f ′′(x)h2 +
f (4)(ξ1) + f (4)(ξ2)

24
h4.

Because f ∈ C4 and 1
2(f (4)(ξ1) + f (4)(ξ2)) is between f (4)(ξ1) and f (4)(ξ2), the Intermediate Value

Theorem implies there is ξ between ξ1 and ξ2 such that f (4)(ξ) = 1
2(f (4)(ξ1) + f (4)(ξ2)). Hence

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+
f (4)(ξ)

12
h2

and so

E(h) =
f (4)(ξ)

12
h2.

�
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S08.4: Let X be a compact subset of RN and let {fn(x)} be a sequence of continuous real functions on

X such that 0 ≤ fn+1(x) ≤ fn(x) and lim
n→∞

fn(x) = 0 for all x ∈ X. Prove Dini’s Theorem that fn(x)

converges to 0 uniformly on X.

Proof:

Let ε > 0 be given. Then we must show there is a N ∈ N such that for all x ∈ X, |fn(x)−f(x)| ≤ ε
where f : X → R is defined for x ∈ X by f(x) := lim

n→∞
fn(x) = 0. To do this, define En = {x ∈

[0, 1] | fn(x) < ε}. Then En is open since En = f−1
n ((−∞, ε)) is the preimage of an open set

and fn is continuous. Moreover, because fn is monotonically decreasing, the the En are ascending,

i.e., En ⊆ En+1 for each n ∈ N. Since {fn} → 0 as n → ∞, {En}∞n=1 forms an open cover of

[0, 1]. Then, by the compactness of [0, 1], there is a finite subcover of [0, 1], which implies there is

a N ∈ N such that EN covers [0, 1]. Then for all n ≥ N and x ∈ [0, 1], we have x ∈ EN and so

|fn(x)− f(x)| = |fn(x)| ≤ ε, completing the proof. �
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S08.10: Suppose A is an n× n complex matrix such that A has n distinct eigenvalues. Prove that if B is

an n× n complex matrix such that AB = BA, the B is diagonalizable.

Proof:

content... �
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S08.12: Let A ∈ Mn(R) be symmetric and S := {x ∈ Rn : ‖x‖ = 1} be the unit sphere in Rn. Let x ∈ S
be such that

〈Ax, x〉 = sup
y∈S
〈Ay, y〉 (95)

where 〈z, y〉 is the usual inner product on Rn. (By compactness such x exists.)

a) Prove 〈x, y〉 = 0 ⇒ 〈Ax, y〉 = 0. Hint: Expand 〈A(x+ εy), x+ εy〉.

b) Use (a) to prove x is an eigenvector for A.

c) Use induction to prove Rn has an orthonormal basis of eigenvectors for A.

Note: If you use part c) to prove part a) or part b), then your solution should include a proof of c) that

does not use part a) or part b).

Solution:

a) Define f : Rn → R by f(y) = 〈Ay, y〉 and define g : Rn → R by g(y) = 〈y, y〉 − 1. Then

〈Ax, x〉 is the max of f subject to the constraint g = 0. Moreover,

∇f(y) = 2Ay and ∇g(y) = 2y. (96)

Lagrange’s theorem for multipliers asserts that if the first partials of f and g are continuous

and f attains an extremum at a point x subject to g(x) = 0, then ∇f(x) = λ∇g(x). Indeed,

∇f and ∇g are linear and so the partials of f and g are continuous. Hence

2Ax = ∇f(x) = λg(x) = λ2x ⇒ Ax = λx, (97)

which implies x is an eigenvector of A (n.b. x 6= 0 since ‖x‖ = 1). Moreover,

0 = 〈x, y〉 ⇒ 0 = λ · 0 = λ 〈x, y〉 = 〈λx, y〉 = 〈Ax, y〉 , (98)

as desired.

b) We already proved in a) that x is an eigenvector for A.

c) We now prove the real spectral theorem. If n = 1, then x forms an orthonormal basis for R.

Now suppose n > 1 and that the result holds for k = 1, . . . , n − 1. Again let x ∈ Rn be the

eigenvector of A as above. Set U = span(x) and observe Ax = λx ∈ U. This implies U is

invariant under A. In fact, if u ∈ U and w ∈ U⊥, then 0 = 〈u,w〉 and so

〈u,Aw〉 = 〈Atu,w〉 = 〈Au,w〉 = 〈λu,w〉 = λ 〈u,w〉 = λ · 0 = 0, (99)

which implies Aw ∈ U⊥. Hence U⊥ is invariant under A. Moreover, since Rn = U ⊕ U⊥,

we have dimU⊥ = dimCn − dimU = n − 1. Since U⊥ is invariant under A, the inductive
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hypothesis then implies the restriction of A to U⊥ has an orthonormal basis consisting of

eigenvectors of A, say e1, . . . , en−1. And, 〈x, ei〉 = 0 for i = 1, . . . , n − 1 since x ∈ U and

ei ∈ U⊥. Thus, x, e1, . . . , en−1 forms an orthonormal basis of Rn consisting of eigenvectors for

A. This closes the induction and the result follows.

We lastly verify Rn = U ⊕ U⊥. Suppose v ∈ U ∩ U⊥. Then 〈v, v〉 = 0, which implies v = 0

and so U ∩ U⊥ = {0}. Now let v ∈ Rn. Then

v = 〈v, x〉x︸ ︷︷ ︸
u

+ v − 〈v, x〉x︸ ︷︷ ︸
w

= u+ w
(100)

where u ∈ U and w ∈ U⊥. To see that w ∈ U⊥, simply note that 〈w, x〉 = 〈v, x〉 − 〈v, x〉 = 0.

This shows Rn = U + U⊥. Combined with the fact U ∩ U⊥ = {0}, we obtain Rn = U ⊕ U⊥.

�
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W08.01: Let g ∈ C([a, b]) with a ≤ g(x) ≤ b for all x ∈ [a, b]. Prove the following:

a) g has at least one fixed point p ∈ [a, b].

b) If there is γ < 1 such that |g(x)− g(y)| ≤ γ|x−y| for all x, y ∈ [a, b], then the fixed point p is unique,

and the iteration xn+1 = g(xn) converges to p for any initial guess x0 ∈ [a, b].

Proof:

a) Define f : [a, b]→ [a, b] by f(x) = g(x)− x. Then f is continuous since it is the composition

of continuous functions. We know f(a) ≥ 0 since g(a) ≥ a and f(b) ≤ 0 since g(b) ≤ b. If

f(a) = 0 or f(b) = 0, then we have a fixed point and are done. So, suppose this is not the

case. Then f(a) < 0 and f(b) > 0. Then, by the Intermediate Value Theorem, there exists

x ∈ (a, b) such that f(x) = 0. Such an x is a fixed point of g.

b) This is essentially a proof of the Banach Fixed Point theorem. Since [a, b] is complete, it

suffices to show that {xn} is Cauchy. First note

|xn+1 − xn| = |g(xn)− g(xn−1)| ≤ γ|xn − xn−1| ≤ · · · ≤ γn|x1 − x0|. (101)

This implies for n > m

|xn − xm| ≤
n−1∑
j=m

|xj+1 − xj | Repeatedly apply triangle inequality

≤
n−1∑
j=m

γj |x1 − x0| Use (101)

= γm|x1 − x0|
n−m−1∑
j=0

γj Reindex sum

≤ γm|x1 − x0|
∞∑
j=0

γj Relate to geometric series

=

(
|x1 − x0|

1− γ

)
· γm. Compute limit of series

(102)

Since 0 < γ < 1, γm −→ 0 as m −→∞. So, for any ε > 0, we can find and N such that

|xn − xm| ≤
(
|x1 − x0|

1− γ

)
· γm < ε whenever n,m ≥ N. (103)

Thus, the sequence {xn} is Cauchy. Since [a, b] is complete, it follows there is a x ∈ [a, b] such

that xn −→ x. But, this implies

x = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

g(xn) = g
(

lim
n→∞

xn

)
= g(x) (104)
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where we have used the continuity of g to pull the limit to the argument of g. Thus, the limit

x is a fixed point of g, and this was irrespective of the initial guess x0.

All that remains is to show that p is unique. By way of contradiction, suppose there is q 6= p

such that g(q) = q. Then

|p− q| = |g(p)− g(q)| ≤ γ|p− q| < |p− q|, (105)

a contradiction. Hence the fixed point is unique.

�
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F08.1: For which of the values a = 0, 1, 2 is the function f(t) = ta uniformly continuous on [0,∞)? Prove

your assertion.

Proof:

For a = 0: We claim f(t) = t0 = 1 is uniformly continuous on [0,∞). Let ε > 0. Then, for any

x, y ∈ [0,∞) we see that

|f(x)− f(y)| = |x0 − y0| = |1− 1| = 0 < ε. (106)

For a = 1: We claim f(t) = t1 = t is uniformly continuous on [0,∞). Let ε > 0. Then for any

x, y ∈ [0,∞) such that |x− y| < ε we have |f(x)− f(y)| = |x− y| < ε.

For a = 2: We claim f(t) = t2 is not uniformly continuous on [0,∞). Let ε > 0 be given. Then

for each δ > 0, picking x = ε/2δ yields that

|f(x+ δ)− f(x)| = |(x+ δ)2 − x2| = |2xδ + δ2| > 2xδ = ε. (107)

Hence there does not exists a δ > 0 such that |x−y| < δ implies |f(x)−f(y)| < ε with x, y ∈ [0,∞).

That is, f(x) is not uniformly continuous. �
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F08:3 Give an example of a sequence of continuous real-valued functions fn on [0, 1] such that f(t) =

lim
n→∞

fn(t) is continuous, but for which
∫ 1

0 fn(t) dt does not converge to
∫ 1

0 f(t) dt.

Proof:

For each n ∈ N, define fn : [0, 1]→ R by

fn(x) =


0 if x ≥ 1/n,

4n2x if 0 ≤ x ≤ 1/2n,

2n− 4n2(x− 1/2n) if 1/2n < x < 1/n.

(108)

The function fn(x) is clearly continuous in each interval [0, 1/2n), (1/2n, 1/n), and (1/n, 1] since

there fn is the sum of a constant function and a multiple of x. Now, to check the two points of

question (i.e., 1/2n and 1/n), observe that

lim
x→1/2n−

4n2x = 4n2(1/2n) = 2n = 2n− 4n2(0) = lim
x→1/2n+

2n− 4n2(x− 1/2n), (109)

and

lim
x→1/n−

2n− 4n2(x− 1/2n) = 2n− 4n2(1/n− 1/2n) = 2n− 4n2(1/2n) = 0 = lim
x→1/2n+

0. (110)

So, fn is, in fact, continuous. Furthermore, fn(x) forms a tent function of area one, i.e.,∫ 1

0
fn(x) dx =

∫ 1/2n

0
4n2x dx+

∫ 1/n

1/2n
2n− 4n2(x− 1/2n) dx

=

∫ 1/2n

0
4n2x dx+

∫ 1/n

1/2n
2n dx−

∫ 1

0
4n2(x− 1/2n) dx

=

∫ 1/2n

0
4n2x dx+

∫ 1/2n

0
2n dx−

∫ 1/2n

0
4n2x dx

=

∫ 1/2n

0
2n dx

= 2n(1/2n)

= 1.

(111)

To show the convergence of {fn}, let ε > 0 be given and x ∈ [0, 1]. Then by the Archimedean

property of R, we can pick N ∈ N such that 1/N < x. It follows that |fn(x)− 0| = |0− 0| = 0 < ε

whenever n ≥ N . Thus, for each x ∈ [0, 1], we have that fn(x) → 0 as n → ∞. Consequently,

F (x) = 0 and so
∫ 1

0 F (x) dx =
∫ 1

0 0 dx = 0 6= 1 = lim
n→∞

∫ 1
0 fn(x) dx. �

F08.4:
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a) Suppose that K and F are subsets of R2 with K closed and bounded and F closed. Prove that if

K ∩ F = ∅, then d(F,K) > 0. Recall that d(K,F ) = inf{d(x, y) | x ∈ K, y ∈ F}.

b) Is a) true if K is just closed? Prove your assertion.

Proof:

a) We proceed by proving the contrapositive of the claim. So, suppose d(F,K) ≤ 0. Since the

metric function maps to [0,∞), it follows that d(F,K) = 0. This implies

0 = inf{d(x, y) | x ∈ K, y ∈ F}. (112)

That is, for each ε > 0, we can find x ∈ K and y ∈ F such that d(x, y) < ε. Thus, there exists

sequences {xn, } and {yn} in K and F , respectively, such that d(xn, yn) < 1/n for each n ∈ N.

But, because K is closed and bounded, it follows from the sequential compactness theorem

that {xn} has a convergent subsequence {xnk} where nk ≥ k. We will denote the limit by x.

We claim that {yn} → x. To show this, let ε > 0 be given. Then, by the convergence of

{xn}, there exists N1 ∈ N such that d(xnk , x) < ε/2 whenever k ≥ N1. By the Archimedean

property of R, there is N2 ∈ N such that 1/N2 < ε/2. Define N = max{N1, N2}. Then

d(ynk , x) ≤ d(ynk , xnk) + d(xnk , x) ≤ ε/2 + ε/2 = ε (113)

whenever k ≥ N . Thus, {ynk} → x. But, since F is closed, it must follow that x ∈ F .

Similarly, x ∈ K and so x ∈ K ∩ F , which implies K ∩ F 6= ∅.
�
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F08.5: Suppose
∑∞

n=1 an converges, but no absolutely. Show then that for any a ∈ R, there is a rearrange-

ment of
∑∞

n=1 an that converges to a.

Proof:

Given a sequence {an}, we introduce the sequences {a+
n } and {a−n } defined by

a+
n =

an, if an > 0,

0, if an ≤ 0,
and a−n =

−an, if an < 0,

0, if an ≥ 0.

Then note |an| = a+
n + a−n and an = a+

n − a−n . We claim that
∑∞

n=1 a
+
n =

∑∞
n=1 a

−
n = ∞. Indeed,

since
∑∞

n=1 |an| =
∑∞

n=1 a
+
n +

∑∞
n=1 a

−
n , we cannot have

∑∞
n=1 a

+
n and

∑∞
n=1 a

−
n both be bounded.

For this would imply
∑∞

n=1 |an| is bounded. And, since
∑∞

n=1 an =
∑∞

n=1 a
+
n −

∑∞
n=1 a

−
n , if either

of
∑∞

n=1 a
+
n or

∑∞
n=1 a

−
n is unbounded, then so must the other. Otherwise,

∑∞
n=1 an would be

unbounded.

We now construct a rearrangement of our series that converges to a. Let b1, b2, . . . be the numbers

a+
1 , a

+
2 , . . . in the same order, but with the zeros omitted, and let c1, c2, . . . be the numbers a−1 , a

−
2

in the same order, but with the zeros omitted. Then any series of all the bn with plus signs and cn

with minus signs will be a rearrangement of
∑∞

n=1 an, which we shall denote by
∑∞

n=1 a
′
n.

First suppose a ≥ 0. Then let a′1 = b1, a′2 = b2, and so on until the first n1 ∈ N such that

b1 + · · ·+ bn1 > a.

Then take a′n1+1 = −c1, a′n1+2 = −c2, and so on until the first n2 ∈ N such that

b1 + · · ·+ bn1 − c1 − · · · − cn2 < a.

Then repeat this process, adding bn’s until the sum is greater than a and then subtracting cn’s

until the sum is less than a, back and forth, for each natural number. We claim
∑∞

n=1 a
′
n = a.

Since
∑∞

n=1 bn =
∑∞

n=1−cn = ∞, no matter how many bn’s or cn’s have been used in the sum,

those remaining will still add to ∞. So, at each step of the process there will be a sum of bn

that will get the partial sum above a and then cn’s that will get it below a. Let N ∈ N so that

n1 + n2 + · · · + nk−1 ≤ N < n1 + n2 + · · · + nk for some k ∈ N. Then the difference between

the partial sum
∑N

n=1 a
′
n and a is bounded by the finite sum bnk−1+1 + · · · + bnk when k is odd

and cnk−1+1 + · · · + cnk when k is even. Since the sum of an’s converges, lim
n→∞

an = 0 and so

lim
n→∞

bn = lim
n→∞

cn = 0. Thus, given ε > 0, there is a K ∈ N such that
∣∣∣∑N

n=1 a
′
n − a

∣∣∣ < ε when

N ≥ n1 +n2 + · · ·+nk−1 with k ≥ K. Thus, this rearrangement converges to a. Similarly, if a < 0,

then just begin with the cn instead of the bn.
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2009

S09.1: Set a1 = 0 and define the sequence {an} via the recurrence

an+1 =
√

6 + an for all n ≥ 1. (114)

Show that this sequence converges and determine the limiting value.

Proof:

First, by induction, we show each an is bounded above by 3 for n ∈ N. The base case holds since

a0 = 0 ≤ 3. Supposing an ≤ 3 for some n ∈ N, we see

an+1 =
√

6 + an ≤
√

6 + 3 = 3 (115)

and so we have closed the induction. We claim an+1 ≥ an for each n ∈ N. Indeed,

a2
n − an = an(an − 1) ≤ 3(an − 1) ≤ 3(3− 1) = 6 ⇒ a2

n ≤ 6 + an. (116)

This implies an ≤
√

6 + an = an+1 and we have closed the induction. Thus, {an}∞n=1 is monotoni-

cally increasing and is bounded above. Then by the monotone convergence theorem, this sequence

converges to some limit L. Then, because f(x) =
√

6 + x is continuous,

L = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

f(an) = f
(

lim
n→∞

an

)
= f(L) =

√
6 + L, (117)

This implies 0 = L2 − L− 6 = (L− 3)(L+ 2). Since an ≥ 0, it follows that L = 3. �
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S09.2: Compute the norm of the matrix

A =

[
2 1

0
√

3

]
. (118)

That is, determine the maximum value of the length of Ax over all unit vectors x.

Solution:

We seek to compute ‖A‖2, which is defined by

‖A‖2 := sup {‖Ax‖2 : ‖x‖ = 1} . (119)

Using the spectral radius, we know

‖A‖2 =
√
λmax(ATA) (120)

where λmax(ATA) denotes the maximum eigenvalue of the matrix ATA. We compute the eigenval-

ues of ATA as follows. First note

ATA =

[
2 0

1
√

3

][
2 1

0
√

3

]
=

[
4 2

2 4

]
. (121)

So, the characteristic polynomial χ(λ) is given by

χ(λ) := det(ATA− λI) = (4− λ)2 − 4 = λ2 − 8λ+ 12 = (λ− 6)(λ− 2). (122)

Hence the eigenvalues are 2 and 6, from which we conclude ‖A‖2 =
√

6 . �

95 Last Modified: 4/18/2017



Basic Qual Notes Heaton

S09.3: We wish to find a quadratic polynomial P obeying

P (0) = α, P ′(0) = β, P (1) = γ, P ′(1) = δ (123)

where ′ denotes differentiation.

a) Find a minimal system of linear constraints on (α, β, γ, δ) such that this is possible.

b) When the constraints are met, what is P? Is it unique? Explain your answer.

Solution:

a) Sine P is quadratic, we can write P (x) = ax2 +bx+c for some a, b, c ∈ R. The first constraint

gives P (0) = c = α, the second β = P ′(0) = [2ax + b]x=0 = b, the third γ = P (1) =

[ax2 + bx + c]x=1 = a + b + c, and the fourth δ = P ′(1) = [2ax + b]x=1 = 2a + b. Expressing

this as a linear system we can write
0 0 1

0 1 0

1 1 1

2 1 0


 a

b

c

 =


α

β

γ

δ

 , (124)

which can be reduced to
0 0 1

0 1 0

1 1 1

0 0 0


 a

b

c

 =


α

β

γ

δ − 2γ + β + 2α

 . (125)

So, a solution exists provided δ = 2γ − β − 2α. In this case, we obtain 0 0 1

0 1 0

1 1 1


︸ ︷︷ ︸

A

 a

b

c


︸ ︷︷ ︸

x

=

 α

β

γ


︸ ︷︷ ︸

b

.
(126)

Define A, x, and b to be the underbraced quantities.

b) Yes, the solution P is unique. By simple computation, we find det(A) = −1 6= 0 and so A is

invertible. This implies x = A−1b, which gives an explicit expression for each of the coefficients
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of P . Namely,

x = A−1b =

 −α− β + γ

β

α

 ⇒ P (x) = (γ − α− β)x2 + βx+ α (127)

where δ = 2γ − β − 2α.

�
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F09.4: Let V be a finite dimensional R-vector space, whose dimension we denote by dim(V ), equipped with

an inner product 〈·, ·〉 : V × V → R. For a vector space U ⊆ V , denote by U⊥ its orthogonal complement,

i.e., the set of v ∈ V such that 〈v, u〉 = 0 for all u ∈ U . Show that dim(U) + dim(U⊥) = dim(V ).

Proof:

First we will show that V = U ⊕ U⊥. Let v ∈ V and e1, . . . , em be an orthonormal basis of U .

Then
v = 〈v, e1〉 e1 + · · ·+ 〈v, em〉 em︸ ︷︷ ︸

u

+ v − 〈v, e1〉 e1 − · · · − 〈v, em〉 em︸ ︷︷ ︸
w

.
(128)

Let u and w be defined as in the above equation. Clearly, u ∈ U . Because e1, . . . , em is an

orthonormal list, for each j = 1, . . . ,m we have 〈w, ej〉 = 〈v, ej〉−〈v, ej〉 = 0. Thus, w is orthogonal

to every vector in span{e1, . . . , em}, which implies w ∈ U⊥. Thus, we have written v = u+w where

u ∈ U and w ∈ U⊥. So, V = U + U⊥. Now, suppose y ∈ U ∩ U⊥. Then 〈y, y〉 = 0, which implies

y = 0. Thus, U ∩ U⊥ ⊂ {0} and, since 0 is in every vector space, U ∩ U⊥ = {0}. This implies

V = U ⊕U⊥. Now let f1, . . . , fn be a basis for U⊥. Then, because U ∩U⊥ = {0} and U ⊕U⊥ = V ,

we see e1, . . . , em, f1, . . . , fn must form a basis for V . Thus, dim(V ) = n+m = dim(U⊥) + dim(U).

�
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F09.12: Let V be an n-dimensional vector space over C (with n ≥ 2) with a set of basis vector e1, . . . , en.

Let T be a linear transformation of V satisfying T (e1) = e2, . . . , T (en−1) = en, T (en) = e1.

i) Show that T has 1 as an eigenvalue and write down an eigenvector with value 1. Show that, up to

scaling, it is unique.

ii) Is T diagonalisable? (Hint: Calculate the characteristic polynomial.)

Proof:

i) Let v = e1 + · · · en. Then

Tv = T (e1 + · · ·+ en−1 + en) = e2 + · · ·+ en + e1 = e1 + · · ·+ en−1 + en = v. (129)

So, there exists v ∈ V with eigenvalue 1. Now we must show it is unique up to scaling. Let

w ∈ V be any eigenvector with eigenvalue 1. Then there exists scalars a1, . . . , an ∈ C such

that w = a1e1 + · · ·+ anen. Then

T (w) = T (a1e1 + · · ·+ anen)= a1e2 + · · · ane1 = ane1 + a1e2 + · · · an−1en. (130)

This implies a1 = a2, a2 = a3, . . ., an = a1. That is, a1 = a2 = · · · = an. Let α = a1. Then

w = α(e1 + e2 + · · ·+ en) = αv. Hence, up to scaling, the eigenvector v of T with eigenvalue

1 is unique.

ii)

�
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2010

S10.1: Let u1, . . . , un be an orthornormal basis of Rn and let y1, . . . , yn be a collection of vectors in Rn

satisfying
∑

i ‖yi‖2 < 1. Prove that the vectors u1 + y1, . . . , un + yn are linearly independent.

Proof:

Lemma: Let A ∈ Matn×n(R). If ‖A‖ < 1, then I −A is invertible.

Suppose I − A is singular. Then there exits v∗ ∈ Rn such that (I − A)v∗ = 0, which is equivalent

to saying Av∗ = Iv∗ = v∗. That is, I−A is singular iff 1 is an eigenvalue of A. If 1 is an eigenvalue

of A, then there is a unit vector v ∈ Cn such that ‖A‖ ≥ ‖Av‖ = ‖v‖ = 1. Thus, if ‖A‖ < 1, then

1 is not an eigenvalue of A, which implies I −A is invertible. �

Define L : Rn → Rn by L(ui) = −yi. Then the columns of the matrix I − L form the vectors

ui + yi for i = 1, . . . , n. And I −L is invertible iff these vectors are linearly independent. Then, by

the above lemma, it suffices to show ‖A‖ < 1.

Let x ∈ Cn be a unit vector. Then there are unique scalars a1, . . . , an such that x = a1u1+· · ·+anun.

Then, using the triangle and Hölder’s inequalities,

‖Lx‖ =

∥∥∥∥∥−
n∑
i=1

aiyi

∥∥∥∥∥ ≤
n∑
i=1

|ai| ‖yi‖ ≤

(
n∑
i=1

a2
i

)1/2( n∑
i=1

‖yi‖2
)1/2

≤ ‖x‖ ·

(
n∑
i=1

‖yi‖2
)1/2

.

So, for all nonzero x we have

‖Lx‖
‖x‖

≤

(
n∑
i=1

‖yi‖2
)1/2

< 1.

To see that the last inequality holds, define α :=
∑

i ‖yi‖2. If
√
α ≥ 1, then α =

√
α
√
α ≥
√
α ≥ 1,

a contradiction. This implies ‖L‖ < 1 and we are done. �
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S10.2: Let A be a n× n real symmetric matrix and let λ1 ≥ . . . ≥ λn be the eigenvalues of A. Prove that

λk = max
U,dim U=k

min
x∈U,‖x‖=1

〈Ax, x〉 ,

where 〈·, ·〉 denotes the usual scalar product in Rn and the maximum is taken over all k dimensional

subspaces of Rn.

Proof:

First note that since A is symmetric, it follows from the Real Spectral Theorem that there exists

an orthogonal matrix P such that A = P TΛP where Λ is a diagonal matrix, consisting of the

eigenvalues of A. Consequently, for any x ∈ Rn

〈Ax, x〉 = 〈P TΛPx, x〉= (P TΛPx)Tx = (ΛPx)TPx= 〈ΛPx, Px〉 .

Note

‖Px‖2 = 〈Px, Px〉 = 〈P TPx, x〉 = 〈P−1Px, x〉 = 〈x, x〉 = ‖x‖2.

Thus, for x ∈ U with ‖x‖ = 1

〈Ax, x〉 = 〈Λ(Px), Px〉 =
n∑
i=1

λi(Px)2
i ≥ λmin

n∑
i=1

(Px)2
i = λmin‖Px‖2 = λmin

where λmin denotes the minimum eigenvalue of A with an eigenvector Px with x ∈ U . In each k

dimensional subspace U of Rn, A has eigenvectors corresponding to k eigenvalues. From the above,

it follows that the subspace U that maximizes the expression is that with the largest eigenvalues;

namely, it contains the eigenvectors corresponding to λ1, . . . , λk. Since λk is the smallest of these, it

follows that in this subspace the minimum of 〈Ax, x〉 will be λk. Hence the desired equality holds.

�
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S10.3: Let S and T be two normal transformations in the complex finite dimensional vector space V with a

positive definite Hermitian inner product such that ST = TS. Prove that S and T have joint basis vectors.

Proof:

Using the commutativity....

Let v ∈ Eλ,T . Then

T (Sv) = S(Tv) = S(λv) = λ(Sv) ⇒ (Sv) ∈ Eλ,T

and so S(Eλ,T ) ⊂ Eλ,T . �

102 Last Modified: 4/18/2017



Basic Qual Notes Heaton

S10.4: i) Let A = (aij) be an n × n real symmetric matrix such that
∑

i,j aijxixj ≤ 0 for every vector

x = (x1, . . . , xn) ∈ Rn Prove that if tr(A) = 0, then A = 0.

ii) Let T be a linear transformation in the complex finite dimensional vector space V with a positive definite

Hermitian inner product. Suppose that TT ∗ = 4T −3I, where I is the identity transformation. Prove that

T is positive definite Hermitian and find all possible eigenvalues of T .

Proof:

i) Recall that tr(A) = λ1 + · · ·+ λn where λi gives the i-th eigenvalue of A for i = 1, . . . , n. Let

vi be an eigenvector of A with eigenvalue λi. Then

0 ≥ 〈Av, v〉 = 〈λv, v〉 = λ 〈v, v〉 .

Since v 6= 0, 〈v, v〉 > 0 and so the above implies λ ≤ 0. Thus, tr(A) ≤ 0 with equality holding

precisely when λi = 0 for each i = 1, . . . , n. So, if tr(A) = 0, then all of the eigenvalues

are zero. And, since A is real symmetric, it is similar to a diagonal matrix, consisting of the

eigenvalues of A. This implies A is similar to the zero matrix, i.e., there exists invertible P

such that A = P0P−1. Then A = P (0P−1) = P0 = 0.

ii) Recall that (TT ∗)∗ = (T ∗)∗T ∗ = TT ∗. This implies 4T − 3I = (4T − 3I)∗ = 4T ∗ − 3I∗ =

4T ∗ − 3I. For v ∈ V we have 〈(4T − 3I)v, v〉 = 4 〈Tv, v〉 − 3 〈v, v〉 and 〈(4T ∗ − 3I)v, v〉 =

4 〈T ∗v, v〉 − 3 〈v, v〉. Equating these, we see 〈Tv, v〉 = 〈T ∗v, v〉, which implies T = T ∗ and so

T is self adjoint, i.e., T is Hermitian. Then 4T − 3I = TT ∗ = T 2 and so T 2 − 4T + 3I = 0.

Thus, by factoring, we see (T −3I)(T −I) = 0 and the eigenvalues of T are contained in {1, 3}.

All that remains is to show T is positive definite. Since T is normal, it follows from the

complex spectral theorem that their exists unitary P and diagonal Λ = diag(λ1, . . . , λn) such

that T = P ∗ΛP . This implies for x ∈ V that

〈Tx, x〉 = 〈P ∗ΛPx, x〉 = 〈ΛPx, Px〉 =

n∑
i=1

λi(Px)2
i ≥

n∑
i=1

(Px)2
i = 〈Px, Px〉 = 〈P ∗Px, x〉 .

where the inequality follows from the above where it was shown that λi ≥ 1 for each i. Thus,

〈Tx, x〉 = 〈P ∗ΛPx, x〉 ≥= 〈P−1Px, x〉 = 〈x, x〉 = ‖x‖2 ≥ 0.

where we use the fact that P ∗ = P−1. Hence for x 6= 0 we have 〈Tx, x〉 > 0, i.e., T is positive

definite, as desired.

�
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S10.5: Let A,B be two n × n complex matrices which have the same minimal polynomial M(t) and the

same characteristic polynomial P (t) = (t − λ1)a1 · · · (t − λk)ak where λi 6= λj for i 6= j. Prove that if

P (t)/M(t) = (t− λ1) · (t− λk), then these matrices are similar.

Proof:

Using P (t)/M(t), for i = 1, . . . , k we see that there is a Jordan block of size ai − 1 with the

eigenvalue λi along the diagonal. This implies there is only one remaining Jordan block for each

λi and that it is of size 1. So, we can uniquely identify the Jordan form J of A, up the order of

the Jordan blocks. So, there is invertible P such that A = P−1JP . Similarly, there is invertible Q

such that B = QJQ−1. Since J = PAP−1, it follows that

B = Q(PAP−1)Q−1 = (QP )A(P−1Q−1) = (QP )A(QP )−1,

which implies that A and B are similar. �

104 Last Modified: 4/18/2017



Basic Qual Notes Heaton

S10.6: Let A =

[
4 −4

1 0

]
.

a) Find the Jordan form J of A and a matrix P such that P−1AP = J .

b) Compute A100 and J100.

c) Find a formula for an when an+1 = 4an − 4an−1 and a0 = a and a1 = b.

Solution:

a) First observe that the characteristic polynomial of A is given by χ(λ) = det(λI − A) =

λ(λ− 4) + 4 = (λ− 2)2. Moreover, the minimal polynomial of A is equal to the characteristic

polynomial because

A− 2I =

[
2 −4

1 −2

]
6= 0.

This implies the Jordan form of A is a single Jordan block, i.e.,

J =

[
2 1

0 2

]

where λ = 2 is the single eigenvalue of A and has multiplicity 2. Solving the linear system

(A− 2I)v = 0, it is clear that v1 = (2, 1) is an eigenvalue of A. Furthermore, since

(A− 2I)2 =

[
2 −4

1 −2

][
2 −4

1 −2

]
=

[
0 0

0 0

]
,

it follows that any vector v2 not equal to a scalar multiple of v1 is a generalized eigenvector

of A, e.g., v2 = (1, 0). Then let P [v1 v2] and observe that

AP =

[
4 −4

1 0

][
2 1

1 0

]
=

[
4 4

2 1

]
and PJ =

[
2 1

1 0

][
2 1

0 2

]
=

[
4 4

2 1

]

and so AP = PJ . Since v1 and v2 are not scalar multiples, they are independent and P is

invertible. Hence A = PJP−1.

b) Now, observe that

J = λI +N = λ

[
1 0

0 1

]
+

[
0 1

0 0

]
.

Then, by the binomial theorem,

Jn = (λI +N)n =
n∑
r=0

(
n

r

)
λn−rN r.
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But, N2 = 0 and so N r = 0 for all r ≥ 2. Thus,

Jn =
1∑
r=0

(
n

r

)
λn−rN r =

(
n

0

)
λnN0 +

(
n

1

)
λn−1N = λnI + nλn−1N =

[
λn nλn−1

0 λn

]
.

So,

J100 =

[
2100 100 · 299

0 2100

]
and

A100 =

[
2 1

1 0

][
2100 100 · 299

0 2100

][
2 1

1 0

]−1

=

[
2 1

1 0

][
2100 100 · 299

0 2100

][
0 1

1 −2

]
.

c) Let αn = (an+1, an). Then

Aαn =

[
4 −4

1 0

](
an+1

an

)
=

(
4an+1 − 4an

an+1

)
= αn+1.

Thus, in general, αn = Anα0. But,

An = PJnP−1 = λn−1

[
2 1

1 0

][
λ n

0 λ

][
0 1

1 −2

]
= λn−1

[
2n+ λ −4n

n λ− 2n

]
.

Hence

αn = λn−1

[
2n+ λ −4n

n λ− 2n

](
a1

a0

)
,

which implies an+1 = λn−1 ([2n+ λ]a1 − 4na0) and so an = λn−2 ([2n− 2 + λ]b− 4(n− 1)a) .

�
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S10.7: Let {fn} be a sequence of real-valued functions on the line, and assume that there is a B <∞ such

that |fn(x)| ≤ B for all n and x. Prove that there is a subsequence {fnk} such that lim
k→∞

fnk(r) exists for

all rational numbers r.

Proof:

We proceed making use of the standard diagonalization argument to construct the desired sub-

sequence, which is here denoted by {fm(j)}∞j=1. First let σ : N → Q be a bijection. Since

fn(σ(1)) ∈ [−B,B] for each n ∈ N and [−B,B] is closed and bounded, the Bolzano-Weierstrass

Theorem implies there exists a subsequence {fn1(j)(σ(1))}∞j=1 that converges in [−B,B]. Similarly,

from the sequence of functions {fn1(j)}∞j=1 we can find a subsequence we can find a subsequence

{fn2(j)}∞j=1 such that the limit lim
k→∞

fn2(j)σ(2) exists. We can continue in this fashion inductively,

i.e., for each subsequence nk(j) we can find a subsubsequence nk+1(j) such that lim
k→∞

fnk+1(j)σ(k+1)

exists. By the construction of nk+1, we further have lim
k→∞

fnk+1(j)σ(i) exists for i = 1, . . . , k + 1.

Using this, define the sequence {m(j)}∞j=1 by m(j) = nj(j).

We claim lim
j→∞

fm(j)(q) exists for each q ∈ Q. To show this, let q ∈ Q be given. Then there is k ∈ N

such that q = σ(k). Then there are only finitely many terms in the sequence {fm(j)(σ(k))}∞j=1 that

are not also in {fnk(j)(σ(k))}∞j=1, namely, the k − 1 terms fnk(1)(σ(k)), . . . , fnk(k−1)(σ(k)). Hence

{fm(j)(σ(k))}∞j=1 must converge to the limit of {fnk(j)(σ(k))}∞j=1. Because q was chosen arbitrarily,

this holds for each rational number, completing the proof. �
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S10.8: Assume that K is a closed subset of a complete metric space (X, d) with the property that, for any

ε > 0, K can be covered by a finite number of sets Bε(x) = {y ∈ X | d(x, y) < ε}. Prove that K is

compact.

Proof:

By definition of the completeness of X, every Cauchy sequence in X converges to a point in X.

Since K ⊆ E, every Cauchy sequence in K converges to a point in X. Moreover, because K is

closed, K contains its limit points and so every Cauchy sequence in K converges in K, i.e., K is

complete. Since a K is compact iff it is sequentially compact, we prove that K is sequentially com-

pact. Let {xn} be a sequence in K. It suffices to show this sequence has a convergent subsequence

{xnk}. By completeness ofK, this is accomplished if we show {xn} has a Cauchy subsequence {xnk}.

Cover X by finitely many balls of radius 1. (This is possible since X is totally bounded). By the

pigeonhole principle, at least one of these balls must have an infinite number of xi. Call this ball

B1 and let S1 be the set of integers i for which xi ∈ B1. Continuing in an inductive fashion, for

each k ∈ N with k > 1, we define Bk to be the intersection of Bk−1 and an open ball of radius

1/k containing an infinite number elements from the collection {xi}i∈Sk−1
. Let Sk be the collection

of indices i of these xi ∈ Bk. Each of the Sk is infinite. So, we can pick a sequence {nk} with

nk < nk+1 for each k. Since the Sk are nested, it follows that whenever i, j ≥ k, then ni, nj ∈ Sk.
Hence for i, j ≥ k, xni and xnj are contained some open ball of radius 1/k centered at a point ck

so that

d(xni , xnj ) ≤ d(xni , ck) + d(ck, xnj ) ≤ 2/k.

By the Archimedean property of R, for each ε > 0 we can find N ∈ N such that 1/N < ε/2. Hence

d(xni , xnj ) < 1/N < ε whenever i, j ≥ N . Thus, {xnk} is Cauchy. �
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S10.9: Assume f(x, y, z) is real valued and continuously differentiable such that f(x0, y0, z0) = 0. If
~∇f(x0, y0, z0) 6= 0, show that there is a differentiable surface, given parametrically by (x(s, t), y(s, t), z(s, t))

with (x(0, 0), y(0, 0), z(0, 0)) = (x0, y0, z0), on which f = 0.

Proof:

Since ∇f(x0, y0, z0) 6= 0, at least one of the partial derivatives of f at (x0, y0, z0) is nonzero.

Without loss of generality, suppose fz(x0, y0, z0) 6= 0. Then the implicit function theorem implies

there is an open subset U ⊂ R2 containing (x0, y0), an open subset V ⊂ R containing z0, and a

differentiable function g : U → V such that

f(x, y, g(x, y)) = f(x0, y0, z0) = 0 ∀(x, y) ∈ U.

For (x, y) ∈ U , define s := x− x0 and t = y − y0 so that x(s, t)...

Since
~∇f(x, y, z) =

[
∂f

∂x

∂f

∂y

∂f

∂z

]
and ~∇f(x0, y0, z0) 6= 0, we may assume, without loss of generality, that ∂f(x0, y0, z0)/∂z 6= 0 and so

(∂f(x0, y0, z0)/∂z)−1 exists. The implicit function theorem implies there is an open subset U ⊂ R3

with (x0, y0, z0) ∈ U and an open subset W ⊂ R2 with (x0, y0) ∈W such that for each (x, y) ∈W
there is a unique z such that (x, y, z) ∈ U and f(x, y, z) = 0. Due to this uniqueness, we may define

g : W → R by z = g(x, y), which the implicit function theorem further tells us is differentiable. We

have shown by the implicit function theorem that for (x, y) ∈W we have f(x, y, g(x, y)) = 0. Define

W0 = {(x−x0, y−y0) | (x, y) ∈W}. We now parametrically define our surface mapping W0 in R3

by x(s, t) = s+x0, y(s, t) = t+y0, and z(s, t) = g(s+x0, y+y0). As noted above g is differentiable

and s+x0 and y+y0 are also and so the composition z(s, t) is differentiable. The functions x(s, t) and

y(s, t) are also clearly differentiable. Then (x(0, 0), y(0, 0), z(0, 0)) = (x0, y0, g(x0, y0)) = (x0, y0, z0),

as desired. Furthermore, through this construction we have f(x(s, t), y(s, t), z(s, t)) = 0, and we

are done. �
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S10.10: Let f(x, y) be the function defined by

f(x, y) =
xy√
x2 + y2

when (x, y) 6= (0, 0) and f(0, 0) = 0.

a) Compute the directional derivatives of f(x, y) at (0, 0) in all directions where they exist.

b) Is f(x, y) differentiable at (0, 0)? Prove your answer.

Proof:

a) Let h = (a, b) ∈ R2 with ‖(a, b)‖ = 1. Then the directional derivative of f in the direction of

h is given by

lim
t→0

f(th)−��
�* 0

f(0)

t
= lim

t→0

abt2

t
√

(at)2 + (bt)2
= lim

t→0

abt2

t|t|
√
a2 + b2

= lim
t→0

t

|t|
· ab.

If a = 0 or b = 0, then lim
t→0

t

|t|
· ab = lim

t→0

t

|t|
· 0 = 0. So, the limit exists along the x and y

axes and is equal to zero there. The directional derivative does not exist in other directions

because there limit as t→ 0+ is nonzero and equals the negative of the limit as t→ 0−.

b) We show f is not differentiable at (0, 0) by way of contradiction. Suppose f is differentiable

at (0, 0). Then there is a linear map L : R2 → R such that

lim
(x,y)→(0,0)

|f(x, y)− f(0, 0)− L(x, y)h|
‖(x, y)− (0, 0)‖

= 0.

Since L exists, it is completely determined by the partial derivatives of f at (0, 0). From the

limit in a) with either a = 0 or b = 0 we see these partial derivatives are zero, and, thus,

L = 0. So, ∣∣∣f(x, y)−����:
0

f(0, 0)−����:
0

L(x, y)h
∣∣∣

‖(x, y)− (0, 0)‖
=
|f(x, y)|
‖(x, y)‖

=
xy

‖(x, y)‖2
=

xy

x2 + y2
.

This implies

lim
(x,x)→(0,0)

‖f(x, y)− f(0, 0)−D(x, y)‖
‖(x, y)− (0, 0)‖

= lim
(x,x)→(0,0)

x2

2x2
=

1

2
6= 0,

a contradiction. �
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S10.11: Suppose
∑∞

n=1 |an| < ∞. Let σ : N → N be one-to-one. The series
∑∞

n=1 aσ(n) is called a

“rearrangement” of
∑∞

n=1 an. Prove that all rearrangements of
∑∞

n=1 an are convergent and have the same

sum.

Proof:

Since the series
∑∞

n=1 |an| is convergent, it is Cauchy and so, given ε > 0, there is a N ∈ N such

that ∀ ` > k ≥ N ,
∑`

n=k |an| < ε. Thus,∣∣∣∣∣∑̀
n=k

an

∣∣∣∣∣ ≤ ∑̀
n=k

|an| < ε, (131)

and
∑∞

n=1 an converges. Let a denote the limit of this series and σ : N → N be a bijection. We

seek to show

a =
∞∑
n=1

aσ(n). (132)

This will be done if, given ε > 0, we can find N ∈ N such that for all k ≥ N ,∣∣∣∣∣
k∑

n=1

aσ(n) − a

∣∣∣∣∣ < ε. (133)

Since
∑∞

n=1 |an| is Cauchy, there is N1 ∈ N such that
∑∞

n=N1+1 |an| < ε/2. Now pick N ≥ N1 such
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that {1, 2, . . . , N1} ⊆ σ ({1, 2, . . . , N}). For k ≥ N we obtain∣∣∣∣∣
k∑

n=1

aσ(n) − a

∣∣∣∣∣ =

∣∣∣∣∣∣
k∑

n=1

aσ(n) −
N1∑
n=1

an −
∞∑

n=N1+1

an

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∑

n=1,n/∈σ−1(1,2,...,N)

aσ(n) −
∞∑

n=N1+1

an

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
k∑

n=1,n/∈σ−1(1,2,...,N)

aσ(n)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∞∑

n=N1+1

an

∣∣∣∣∣∣
≤

k∑
n=1,σ(n)/∈{1,2,...,N1}

∣∣aσ(n)

∣∣+
∞∑

n=N1+1

|an|

≤ 2
∞∑

n=N1+1

|an|

< 2 · ε/2

= ε,

(134)

as desired. �
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S10.12: Assume that {fn} is a sequence of nonnegative continuous functions on [0, 1] such that lim
n→∞

∫ 1
0 fn(x) dx =

0. Is it necessarily true that

a) There is a B such that fn(x) ≤ B for x ∈ [0, 1] for all n?

b) There are points x0 ∈ [0, 1] such that lim
n→∞

fn(x0) = 0?

Proof:

a) Consider the tent function of width 2/n2 and height n. For each n,
∫ 1

0 fn(x) dx = 1/n. To be

more rigorous, define f1 = 0 and for n > 1 define

fn(x) =


n3x if x ∈ [0, 1/n2]

n− n3(x− 1/n2) if x ∈ (1/n2, 2/n)

0 if x ∈ [2/n, 1].

Continuity of fn is clear along the intervals [0, 1/n2), (1/n2, 2/n2), and (2/n, 1] since there

fn is linear. A simple check at 1/n2 and 2/n2 shows that the left and right hand limits of fn

agree there, which implies fn is continuous. So, fn(1/n2) = n, which grows without bound.

Hence the claim of an upper bound B is not necessarily true.

b) Let σ : N→ Q be a bijection. Then for each r ∈ Q, define τ : Q→ [0, 1] by

τ(r)

r if r ∈ [0, 1]

|r| − b|r|c if r /∈ [0, 1].

So, for each r ∈ [0, 1) ∩Q, we can find infinitely many natural numbers that (τ ◦ σ) maps to

r, which implies for each k ∈ N we can find n ∈ N with n > k such that (τ ◦ σ)(n) = r.

For each n ∈ N, define gn : [0, 1]→ R for each x ∈ [0, 1] by

gn(x) =


fn(x+ (τ ◦ σ)(n)− 1/n2 + 1) if x+ an − 1/n2 < 0

fn(x+ (τ ◦ σ)(n)− 1/n2) if 0 ≤ x+ an − 1/n2 ≤ 1

fn(x+ (τ ◦ σ)(n)− 1/n2 − 1) if x+ an > 1.

Our function gn is a slide of the tent function fn in a) around the interval [0, 1] so that the

peak of the tent occurs at the rational number (τ ◦ σ)(n).

Now pick x0 ∈ [0, 1] and let n ∈ N and ε > 0 be given. To show lim
n→∞

fn(x0) 6= 0, it suffices to

find k > n such that fk(x0) ≥ 1/2. By the density of Q, there exists r ∈ [0, 1) ∩Q such that
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|x0 − r| ≤ 1/2n2. And, by construction of (τ ◦ σ), there exists k > n such that r = (τ ◦ σ)(k).

This implies that the peak of gk occurs at r, i.e., gk(r) = n. Using the definition of gk, it

follows that

|gk(x0)− 0| ≥ |gk(r + 1/2n2)| = n/2 ≥ 1/2.

Thus, there does not exists N ∈ N such that |gn(x0) − 0| ≤ 1/2 for all n ≥ N . This shows

lim
n→∞

gn(x0) 6= 0. Since x0 was chosen arbitrarily in [0, 1], this holds for each x0 ∈ [0, 1]. Hence

the claim is false.

�
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F10.1: Let F be a closed subset of a metric space X with metric ρ.

a) Show that if K ⊆ X is compact, then K ∩ F = ∅ iff

inf
x∈K,y∈F

ρ(x, y) > 0.

b) Is the statement in a) true if K is only assumed to be closed, rather than compact? Give a proof if

it is true, and a counterexample if it is false.

Proof:

a) By way of contradiction, suppose

inf
x∈K,y∈F

ρ(x, y) = 0.

Then for each n ∈ N, there exists xn ∈ K and yn ∈ F such that ρ(xn, yn) ≤ 1/n. Now,

since K is compact, it is closed and complete. This implies that the sequence {xn} has a

convergent subsequence {xnk} that converges to a limit x ∈ K. Let ε > 0 be given. Then,

by the convergence of {xnk}, there is an integer K ∈ N such that ρ(xnk , x) ≤ ε/2 whenever

k ≥ K. Also, by the Archimedean property of R, there exists N ∈ N such that 1/N ≤ ε/2.

Now define M = max{N,K}. Then

ρ(x, ynk) ≤ ρ(x, xnk) + ρ(xnk , ynk) ≤ ε/2 + ε/2 = ε

whenever n ≥M . Hence {ynk} converges to x. Since F is closed, it follows that x ∈ F . Then

x ∈ K ∩ F , which implies K ∩ F 6= ∅, a contradiction. Thus, if K ∩ F = ∅, then

inf
x∈K,y∈F

ρ(x, y) > 0.

Conversely, now suppose K ∩ F 6= ∅. Then there exists z ∈ K ∩ F . Then

inf
x∈K,y∈F

ρ(x, y) = ρ(z, z) = 0,

a contradiction. Hence if inf
x∈K,y∈F

ρ(x, y) > 0, then K ∩ F = ∅.

b) No, the statement does not hold with these looser conditions. To verify this, we provide

a counterexample. Let X = R2 with the standard metric. Then define K = {(n, 0) |
n ∈ N} and F = {(n, 1/n) | n ∈ N}. Then both K and F are closed with intersection

K ∩ F = ∅. However, for each n ∈ N, there exists (n, 0) ∈ K and (n, 1/n) ∈ F such that
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ρ((n, 0), (n, 1/n)) = 1/n. Thus,

inf
x∈K,y∈F

ρ(x, y) = 0.

�
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F10.2: Suppose f is a bounded function on [a, b].

a) Define “f is Riemann integrable on [a, b]”.

b) Prove directly from the definition that if f is continuous, then f is Riemann integrable.

Proof:

a) Let P = {I1, . . . , In} be a partition of [a, b]. Then lower and upper Riemann sums of f are,

respectively, given by

L(f, P ) =
n∑
k=1

(
inf
x∈Ik

f(x)

)
|Ik| and U(f, P ) =

n∑
k=1

(
sup
x∈Ik

f(x)

)
|Ik|.

The function f is Riemman integrable on [a, b] if

inf
P
U(f, P ) = sup

P
L(f, P )

where the infimum and supremum are taken over all partitions P of the interval [a, b].

b) To prove the claim, we show that, given any ε > 0,∣∣∣∣inf
P
U(f, P )− sup

P
L(f, P )

∣∣∣∣ ≤ ε.
Since [a, b] is closed and bounded, it follows from Bolzano-Weierstrass that it is compact. So,

f is uniformly continuous. Then there is a δ > 0 such that, for x, y ∈ [a, b], if |x − y| ≤ δ,

then |f(x) − f(y)| ≤ ε/(b − a). By the Archimedean property of R, there is a N ∈ N such

that (b− a)/N ≤ δ. Then define a regular partition PN = {Ik}Nk=1 of [a, b] so that the width

of each subinterval is (b− a)/N ≤ δ. Then∣∣∣∣∣sup
x∈Ik

f(x)− inf
y∈Ik

f(y)

∣∣∣∣∣ ≤ ε

b− a
,

which implies

sup
x∈Ik

f(x) ≤ inf
y∈Ik

f(y) +
ε

b− a
.
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Consequently,

U(f, P ) =

N∑
k=1

(
sup
x∈Ik

f(x)

)
|Ik|

≤
N∑
k=1

(
inf
x∈Ik

f(x) +
ε

b− a

)
|Ik|

=

N∑
k=1

(
inf
x∈Ik

f(x)

)
|Ik|+

N∑
k=1

ε

b− a
· |Ik|

= L(f, P ) + ε.

But, this implies

inf
P
U(f, P ) ≤ U(f, PN ) ≤ L(f, PN ) + ε ≤ sup

P
L(f, P ) + ε.

But, by definition, L(f, P ) ≤ U(f, P ) for each P . Hence∣∣∣∣inf
P
U(f, P )− sup

P
L(f, P )

∣∣∣∣ ≤ ε.
�
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F10.5: Prove or disprove the following two statements: For any two subsets S and S′ of a vector space V ,

a) span(S) ∩ span(S′) = span(S ∩ S′).

b) span(S) + span(S′) = span(S ∪ S′).

Proof:

a) We disprove this claim by a counter example. Let V = R, S = {0, 1} and S′ = {0, 2}. Then

span(S) = R = span(S′). So, span(S) ∩ span(S′) = R ∩ R = R. However, span(S ∩ S′) =

span(0) = {0} and so span(S) ∩ span(S′) 6= span(S ∩ S′).

b) We prove the truth of this statement. Let u + v ∈ span(S) + span(S′). Since S ⊆ S ∪ S′,
span(S) ⊆ span(S∪S′) and so u ∈ span(S∪S′). Similarly, v ∈ span(S∪S′). Since span(S∪S′)
is a vector space, it closed under vector addition and so u + v ∈ span(S ∪ S′), which implies

span(S) + span(S′) ⊆ span(S∪S′). Now let w ∈ span(S∪S′). Then w is a linear combination

of elements in S∪S′, which implies we can write w = w1 +w2 where w1 is a linear combination

of elements in S and w2 is a linear combination of elements in S′. But, then w1 ∈ span(S)

and w2 ∈ span(S′). Hence w ∈ span(S) + span(S′) and span(S ∪ S′) ⊆ span(S) + span(S′).

The desired equality follows.

�
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F10.6: Let T be an invertible linear operator on a finite dimensional vector space V over a field F . Prove

that there exists a polynomial f over F such that T−1 = f(T ).

Proof:

Let f(t) = a0 + a1t+ · · ·+ ant
n be the minimal polynomial of T where a0, · · · , an ∈ F . We claim

a0 6= 0. For, if it did, then we would have f(t) = t(a1 + · · · antn−1), implying that either T = 0

or a1 + · · · + anT
n−1 = 0, which both contradict the fact that f(t) is the minimal polynomial of

T . Hence a0 6= 0. Since f(T ) = 0, this implies that, upon subtracting a0 from each side and then

dividing by −a0 we get

I = − 1

a0
(a1T + · · ·+ anT

n) .

Consequently,

T−1 = − 1

a0

(
a1T

−1T + · · ·+ anT
−1Tn

)
= − 1

a0

(
a1I + · · ·+ anT

n−1
)

and have that T−1 is expressible as a polynomial of T , as desired. �
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F10.7: Let V and W be inner product spaces over C such that dim(V ) ≤ dim(W ) <∞. Prove that there

is a linear transformation T : V →W satisfying 〈T (v), T (v′)〉W = 〈v, v′〉V for all v, v′ ∈ V .

Proof:

Let e1, . . . , em denote an orthonormal basis for V and f1, . . . , fn denote an orthonormal basis for W

where m ≤ n. (Note an orthonormal basis for V and W can be found from any basis of V and W ,

respectively, using the Gram-Schmidt procedure.) Let v ∈ V . Then there exists α1, . . . , αm ∈ C
such that v =

∑m
j=1 αjej . Then define the linear transformation T : V →W by

T (x) = T

 m∑
j=1

αjej

 =

m∑
j=1

αjfj . (135)

We claim that this choice of T satisfies the desired relation. To see this, let v′ ∈ V . Then there

exists β1, . . . , βm ∈ C such that v′ =
∑m

j=1 βjej . Since the ej are orthonormal, 〈ej , ek〉 is 1 if j = k

and 0 when j 6= k. Hence

〈v, v′〉 = 〈
m∑
j=1

αjej ,

m∑
j=1

βjej〉 =

m∑
j=1

αjβj . (136)

Similarly,

〈T (v), T (v′)〉 = 〈
m∑
j=1

αjfj ,

m∑
j=1

βjfj〉 =

m∑
j=1

αjβj (137)

and so the desired relation holds for this choice of T . �
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F10.8: Let W1 and W2 be subspaces of a finite dimensional inner product space V . Prove that (W1∩W2)⊥ =

W⊥1 +W⊥2 where W⊥ is the orthogonal complement of a subspace W of V .

Proof:

First let w ∈W⊥1 and v ∈W1∩W2. Then v ∈W1, which implies 〈w, v〉 = 0 and so w ∈ (W1∩W2)⊥,

which implies W⊥1 ⊆ (W1 ∩W2)⊥. Similarly, W⊥2 ⊆ (W1 ∩W2)⊥. Since (W1 ∩W2)⊥ is a vector

space, it is closed under vector addition, which implies W⊥1 +W⊥2 ⊆ (W1 ∩W2)⊥.

Now let v ∈ (W1∩W2)⊥ and e1, . . . , em be an orthonormal basis for W⊥1 . Since W⊥1 ⊆ (W1∩W2)⊥,

we can extend this to an orthonormal basis e1, . . . , en of (W1 ∩W2)⊥ where n ≥ m. Then define v̂

to be the projection of v into W⊥1 , i.e.,

v̂ := 〈v, e1〉 e1 + · · ·+ 〈v, em〉 em.

Of course, v̂ ∈ W⊥1 . Also, v − v̂ ∈ W1 since 〈v − v̂, ej〉 = 〈v, ej | − 〈v, ej | = 0 for each j = 1, . . . ,m.

We now show v − v̂ ∈ W⊥2 . So, let y ∈ W2. Because V = W1 ⊕W⊥1 , there exists unique y1 ∈ W1

and y2 ∈W⊥1 such that y = y1 + y2. Then y1 ∈ (W1 ∩W2) and v− v̂ ∈ (W1 ∩W2)⊥, which implies

〈y1, v − v̂〉 = 0. Also, since y2 ∈W⊥1 , 〈y2, v − v̂〉 = 0. Thus, 〈y, v − v̂| = 〈y1, v − v̂|+ 〈y2, v − v̂| = 0

and so (v − v̂) ∈ W⊥2 . This shows that v ∈ W⊥1 + W⊥2 and, thus, that (W1 ∩W2)⊥ ⊆ W⊥1 + W⊥2 .

The desired equality follows directly. �
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F10.9: Consider the following iterative method

xk+1 = A−1(Bxk + c)

where c = (1, 1)t and A and B are given by

A =

(
2 0

0 2

)
and B =

(
2 1

1 2

)
.

a) Assume the iteration converges; to what vector x does the iteration converge?

b) Does this iteration converge for arbitrary initial vectors? Justify your answer.

Proof:

a) We claim that if the iteration converges to some x, then x = (−1,−1)t. Indeed,

A−1(Bx+ c) =
1

2

(
1 0

0 1

)[(
2 1

1 2

)(
−1

−1

)
+

(
1

1

)]
=

(
−1

−1

)
= x.

b) Observe that

xk+1 = A−1(Bxk + c) =
1

2

(
1 0

0 1

)[(
2 1

1 2

)(
(xk)1

(xk)2

)
+

(
1

1

)]

=
1

2

(
2(xk)1 + (xk)2 + 1

(xk)1 + 2(xk)2 + 1

)

and so, if the entries of xk are nonnegative, then so also will be those of xk+1. Thus, if

x0 = (0, 0), then for each k ∈ N we have

‖xk − x‖ ≥ ‖(0, 0)− (−1,−1)‖ = ‖(1, 1)‖=
√

2.

Hence the sequence does not converge for all initial vectors.

�

F10.11: Find the function g(x) which minimizes∫ 1

0
|f ′(x)|2 dx
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among smooth functions f : [0, 1]→ R with f(0) = f(1). Is the optimal solution g(x) unique.

Proof:

Using the Cauchy Schwarz with f ′(x) and 1 to get

∫ 1

0
f ′(x) dx ≤

√∫ 1

0
f ′(x)2 dx

∫ 1

0
12 dx=

√∫ 1

0
f ′(x)2 dx.

However, by the fundamental theorem of calculus, the left hand side of the above is equal to

f(1) − f(0) = 1. So, squaring both sides gives 1 ≤
∫ 1

0 |f
′(x)|2 dx. Furthermore, equality in

the Cauchy Schwarz relation occurs precisely when f ′ and the constant function 1 are linearly

dependent, i.e., iff f ′ is a scalar multiple of 1. Given the constraints f(0) = 0 and f(1) = 1,

it follows that f ′ is constant iff f ′(x) = 1 iff f(x) = x. So, g(x) = x minimizes
∫ 1

0 |f
′(x)|2 dx.

Moreover, this choice was unique due to the given constraints on f(0) and f(1). �

124 Last Modified: 4/18/2017



Basic Qual Notes Heaton

F10.12: Define D(t) = {x2 + y2 ≤ r2(t)} ⊂ R2, where r(t) : R → R is continuously differentiable. For

a given smooth nonnegative function u(x, t) : R2 ×R → R, express the following quantity in terms of a

surface integral:

d

dt

(∫
D(t)

u(x, t) dx

)
−
∫
D(t)

ut(x, t) dx.

[You may use various theorems in Calculus without proof.]

Proof:

We make use of the Leibniz rule for differentiation under the integral sign. To do this, first we

switch to polar coordinates so that

d

dt

(∫
D(t)

u(x, t) dx

)
=

d

dt

∫ 2π

0

∫ r(t)

0
u(ρ, θ, t) ρdρdθ

=

∫ 2π

0

[
d

dt

∫ r(t)

0
u(ρ, θ, t) ρdρ

]
dθ

=

∫ 2π

0

[∫ r(t)

0
ut(ρ, θ, t) ρdρ+ u(r(t), θ, t) · r(t) · dr(t)

dt

]
dθ

=

∫ 2π

0

∫ r(t)

0
ut(ρ, θ, t) ρdρdθ +

∫ 2π

0
u(r(t), θ, t) · r(t) · dr(t)

dt
dθ

=

∫
D(t)

ut(x, t) dx+

∫ 2π

0
u(r(t), θ, t) · r(t) · dr(t)

dt
dθ

Hence

d

dt

(∫
D(t)

u(x, t) dx

)
−
∫
D(t)

ut(x, t) dx = r(t) · dr(t)

dt
·
∫ 2π

0
u(r(t), θ, t) dθ.

�
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2011

S11.1: Let A be a 3 × 3 matrix with complex entries. Consider tehs et of A that satisfy tr(A) = 4,

tr(A2) = 6, and tr(A3) = 10. For each similarity (i.e., conjugacy) class of such matrices, give one member

in Jordan normal form. The following identity may be helpful: If b1 = a1 + a2 + a3, b2 = a2
1 + a2

2 + a2
3 and

b3 = a3
1 + a3

2 + a3
3, then 6a1a2a3 = b31 + 2b3 − 3b1b2.

Proof:

Recall that the trace of a matrix is equal to the sum of its eigenvalues. Let λ1, λ2, λ3 denote the

eigenvalues of A. Further note that λ2
i is an eigenvalue of A2 for each i since, for the corresponding

eigenvector vi of A, we have A2vi = A(λivi) = λi(Avi) = λ2
i vi. Similarly, λ3

i gives the eigenvalues

of A3 for i = 1, 2, 3. So,

4 = tr(A) = λ1 + λ2 + λ3, 6 = tr(A2) = λ2
1 + λ2

2 + λ2
3, 10 = tr(A3) = λ3

1 + λ3
2 + λ3

3.

Using the given identity, we also know

6λ1λ2λ3 = 43 + 2(10)− 3(4)(6) = 12 ⇒ λ1λ2λ3 = 2.

Let us suppose, without loss of generality, that λ1 = 1. Then

4 = 1 + λ2 + λ3 = 1 + 2/λ3 + λ3 ⇒ λ2
3 − 3λ3 + 2 = 0 ⇒ (λ3 − 2)(λ3 − 1) = 0.

Again, without loss of generality, suppose λ3 = 2. Then λ2 = 2/2 = 1. Indeed, by plugging the

values λ1 = λ2 = 1 and λ3 = 2 into the equations above, we see that this, in fact, the solution. So,

depending on the minimal polynomial of A, we could have a Jordan block for the eigenvalue 1 of

size 2 or two Jordan blocks of size 1. That is, we have two conjugacy classes, each consisting of

matrices similar to one of the following two Jordan matrices:

J =

 1 0 0

0 1 0

0 0 2

 or J =

 1 1 0

0 1 0

0 0 2

 .

�

S11.5: Let A be an n × n matrix with real entries, and let b be a n × 1 column vector with real entries.

Prove that there exists an n× 1column vector solution x to the equation Ax = b if and only if b is in the

orthogonal complement of the kernel of the transpose of A.
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Proof:

We begin with the following lemma:

Lemma: Let U be a subspace of an inner product space V . Then U = (U⊥)⊥.

proof:

Let u ∈ U . Then 〈u, v〉 = 0 for each v ∈ U⊥, which implies u is orthogonal to every element of

U⊥ and, thus, u ∈ (U⊥)⊥. Hence U ⊆ (U⊥)⊥. Conversely, suppose z ∈ (U⊥)⊥. Since we have

V = U ⊕ U⊥, there exists unique z1 ∈ U and z2 ∈ U⊥ such that z = z1 + z2. Since U ⊆ (U⊥)⊥,

z1 ∈ (U⊥)⊥. Then, by closure of vector addition in a vector space, it follows that z − z1 ∈ (U⊥)⊥.

This implies z2 = z − z1 = (U⊥) ∩ (U⊥)⊥, which implies z2 = 0. Hence z = z1 ∈ U and so

(U⊥)⊥ ⊆ U . Therefore, U = (U⊥)⊥. �

We must show that b ∈ im(A) iff b ∈ (kerAt)⊥, i.e., show the equality of these vector spaces. Then

observe that
b ∈ ker(At)⇔ Atb = 0

⇔ 〈Atb, v〉 = 0 ∀ v ∈ Rn

⇔ 〈b, Av〉 = 0 ∀ v ∈ Rn

⇔ b ∈ (im(A))⊥,

where we have used the standard inner product for Rn so that 〈Atb, v〉 = (Atb)tv = (btA)v =

bt(Av) = 〈b, Av〉. So, we have shown ker(At) = (im(A))⊥. Now, using the above lemma, it follows

that

(ker(At))⊥ = ((im(A))⊥)⊥ = im(A),

completing the proof. �
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S11.6: Let V and W be finite dimensional real inner product spaces, and let A : V → W be a linear

transformation. Let w ∈ W . Show that the elements of v ∈ V for which the norm ‖Av − w‖ is minimal

are exactly the solutions to the equations A∗Ax = A∗w.

Proof:

Follow the method shown in several previous problems to show that the minimizer of ‖Av − w‖ is

the projection ŵ of w into im(A) and that w − ŵ ∈ (im(A))⊥. This implies

〈w − ŵ, Av〉 = 0 ∀ v ∈ V ⇔ 〈A∗(w − ŵ), v〉 = 0 ∀ v ∈ V

⇔ 0 = A∗(w − ŵ) = A∗w −A∗ŵ

⇔ Aw∗ = A∗ŵ = A∗Ax

where x ∈ im(A) such that Ax = ŵ. This completes the proof. �

S11.7: Prove that there is a real number x such that x5 − 3x+ 1 = 0.

Proof:

Define p : R → R by p(x) = x5 − 3x + 1. Since p is a polynomial it is continuous since sums

and products of continuous functions are continuous. Then observe that p(2) = 25 − 3(2) + 1 =

32−6 + 1 = 27 > 0 and p(1) = 15−3(1) + 1 = 1−3 + 1 = −1 < 0. It follows from the Intermediate

Value Theorem that there exists x0 ∈ (1, 2) such that p(x0) = 0. �

S11.8: Give examples:

a) A function f(x) on [0, 1] which is not Riemann integrable, for which |f(x)| is Riemann integrable.

b) Continuous functions fn and f on [0, 1] such that fn(t)→ f(t) for all t ∈ [0, 1], but
∫ 1

0 fn(t) dt does

not converge to
∫ 1

0 f(t) dt.

Solution:

a) Define

f(x) =

1 if x ∈ Q

= 1 if x ∈ I.

b) Define fn to be the tent function of height n, width 2/n, centered at 1/n. Then lim
n→∞

fn(x) = 0

for each x ∈ [0, 1] and lim
n→∞

∫ 1
0 fn(x) dx = lim

n→∞
1 = 1 6= 0

∫ 1
0 0 dx =

∫ 1
0 lim
n→∞

fn(x) dx.

�
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S11.9: Prove that if f : [a, b]→ R is continuous and f(x) ≥ 0, then
∫ b
a f(x) = 0 implies that f = 0.

Proof:

Suppose that f 6= 0 and f(x) ≥ 0. Then there exists x0 ∈ [a, b] such that f(x0) > 0. By the

continuity of f , there exists δ > 0 such that if |x0 − x| ≤ δ, then |f(x0) − f(x)| ≤ f(x0)/2. This

implies f(x) ≥ f(x0)/2 whenever x ∈ [x0 − δ, x0 + δ]. Thus, breaking our integral into parts,∫ b

a
f(x) =

∫ x0−δ

a
f(x) +

∫ x0+δ

x0−δ
f(x) +

∫ b

x0+δ
f(x)

≥
∫ x0+δ

x0−δ
f(x)

≥
∫ x0+δ

x0−δ
f(x0)/2

= 2δf(x0)/2

= δf(x0)

> 0.

Thus, f 6= 0 implies
∫ b
a f(x) 6= 0. The desired result follows through contraposition. �

S11.11: Give an example of X ⊆ R2 which is connected, but not path connected.

Proof:

Take A = {(x, y) ∈ R2 | (x, y) = (0, 0) ∨ (y = sin(1/x) ∧ x > 0)}. The graph of a function is

connected and so A − {(0, 0)} connected. Then since (0, 0) is a limit point of A − {(0, 0)}, A is

connected. By way of contradiction, suppose A is also pathwise connected. Then, by hypothesis,

there is a continuous function f : [0, 1]→ A such that f(0) = (0, 0) and f(1) = (1/π, 0). Pick any

δ > 0 with δ ≤ 1/π. Using the Archimedean property of R, we can pick n ∈ N so that

xn :=
1

(4n+ 1)π2
≤ δ,

and note sin(1/xn) = sin((4n+ 1)π/2) = 1. Then

|0− xn| ≤ δ and ‖f(0)− f(xn)‖ =
√

(xn − 0)2 + (sin(xn)− 0)2 =
√
x2
n + 12 ≥ 1.

Hence no δ > 0 exists such that ‖f(0)− f(x)‖ ≤ 1/2 whenever x ∈ [0, δ), i.e., f is not continuous.

This contradiction implies that A is not pathwise connected. �
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S11.12: Given a metric space M , and a constant 0 < r < 1, a continuous function T : M → M is said to

be an r-contraction if it is a continuous map and d(T (x), T (y)) < rd(x, y) for all x and y. A well-known

fixed piont theorem states that if M is complete and T is an r-contraction, then it must have a unique

fixed point (don’t prove this). This result is often used to prove the existence of solutions of differential

equations with initial conditions.

a) Illustrate this technique for the (trivial) case f ′(t) = f(t) and f(0) = 1 by letting M be the space of

continuous functions C([0, 1]) for c ∈ (0, 1) with the uniform distance d(f, g) = sup{|f(t) − g(t)| |
t ∈ [0, c]}, and defining (Tf)(x) = 1 +

∫ x
0 f(t) dt. Carefully explain your steps.

b) What approximations do you obtain from the sequence T (0), T 2(0), T 3(0), . . .?

Proof:

a) Confer older problem.

‖Tf − Tg‖∞ =

[∫ x

0
f(t)− g(t) dt

]
∞
≤ x‖f − g‖∞ ≤ c‖f − g‖∞. (138)

b) First, T (0) = 1, T 2(0) = T (1) = 1 + x, T 3(0) = T 2(1) = T (1 + x) = 1 + x+ x2/2. In general,

we see

f(x) = lim
n→∞

Tn(0) = lim
n→∞

n∑
k=0

xk

k!
= ex.

�

F11.1: Let (X, d) be a compact metric space and let f : X → X be a map satisfying

d(f(x), d(f(y)) < d(x, y), ∀ x, y ∈ X with x 6= y.

Prove that there is a unique point x ∈ X so that f(x) = x.

Proof:

Let h = d(f(x), x). Then h : X → R is continuous since it is the composition of continuous

functions. Because X is compact, h achieves a minimum. Let z ∈ X be such that h(z) is the
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minimal value of h. If f(z) 6= z, then

d(f(f(z)), f(z)) < d(f(z), z) = h(z).

But, this implies h(f(z)) < h(z), which contradicts our choice of z. Hence there must exists z ∈ X
such that f(z) = z.

All that remains is to show uniqueness. So suppose f(x) = x and f(y) = y with x 6= y. Then

d(x, y) > 0 and

d(x, y) = d(f(x), f(y)) < d(x, y),

which implies 0 < d(x, y) < d(x, y), a contradiction. Hence d(x, y) must be zero and so x = y.

Hence the fixed point must be unique. �
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2012

W12.04: For a sequence {an} of non-negative numbers, let sn :=
∑n

k=1 ak and suppose sn tends to a

number s ∈ R in Cesaro sense:

lim
n→∞

s1 + · · ·+ sn
n

= s. (139)

Show that
∑∞

k=1 ak exists and equals s.

Proof:

The sequence {sn}∞n=1 is monotonically increasing (because each ak ≥ 0 for each k). This implies

s1 + · · ·+ sn
n

(140)

is monotonically increasing because this is simply the arithmetic average of the sk. Consequently,

if s = 0, then ak = 0 for each k and the result follows directly. Now suppose s > 0. And, by way of

contradiction, suppose the limit lim
n→∞

sn does not exist. Since the {sn} is monotonically increasing,

this implies we can find N ∈ Z+ such that sN ≥ 2s. For n > N we obtain

s1 + · · ·+ sn
n

=
s1 + · · ·+ sN−1

n
+
sN + · · ·+ sn

n

≥ sN + · · ·+ sn
n

≥ (n−N + 1)

n
· 2s.

(141)

But, taking the limit as n −→∞, we see

s = lim
n→∞

s1 + · · ·+ sn
n

≥ lim
n→∞

(n−N + 1)

n
· 2s = 2s · lim

n→∞
1− N + 1

n
= 2s · 1 = 2s, (142)

which gives s = 2s, a contradiction. Thence the assumption was false and we conclude lim
n→∞

sn

exists.

Set ` := lim
n→∞

sn and let ε > 0 be given. We shall show ` = s. By the convergence of {sn}, there is

a N1 ∈ Z+ such that

|sn − `| <
ε

2
∀ n ≥ N1. (143)

And, by the Archimedean property of R we can pick N2 ∈ Z+ greater than N1 such that

|s1 − `|+ · · ·+ |sN1 − `|
n

<
ε

2
∀ n ≥ N2, (144)

(n.b. the numerator on the left hand side is a constant). Using the triangle inequality, for n ≥ N2
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we discover ∣∣∣∣s1 + · · ·+ sn
n

− `
∣∣∣∣ ≤ |s1 − `|+ · · ·+ |sn − `|

n

=
|s1 − `|+ · · ·+ |sN1 − `|

n
+
|sN1+1 − `|+ · · ·+ |sn − `|

n

≤ ε

2
+
n−N1

n
· ε

2

≤ ε.

(145)

Thence

s = lim
n→∞

s1 + · · ·+ sn
n

= `, (146)

as desired. Consequently, lim
n→∞

sn = s, and we are done. �
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W12.05: Prove there is a unique continuous function y : [0, 1]→ R solving the equation

y(x) = ex +
y(x2)

2
∀ x ∈ [0, 1]. (147)

Proof:

This problem is a direct application of the Banach Fixed Point theorem. Let X be the metric space

with set C[0, 1] and the sup norm ‖ · ‖ for a metric. We claim X is complete (and verify this last).

Then define the mapping T : X → X for f ∈ X by

T (f)(x) = ex +
y(x2)

2
∀ x ∈ [0, 1]. (148)

Let f, g ∈ X and define φ : [0, 1] → R by φ(x) = x2. Note φ(0) = 0, φ(1) = 1 and φ′(x) = 2x for

x ∈ (0, 1). Thus, φ([0, 1]) = [0, 1], from which we deduce

‖f ◦ φ‖ = sup
x∈[0,1]

|(f ◦ φ)(x)| = sup
x∈[0,1]

|f(φ(x))| = sup
x∈[0,1]

|f(x)| = ‖f‖. (149)

Then

‖T (f)− T (g)‖ =

∥∥∥∥(ex +
f(x2)

2

)
−
(
ex +

g(x2)

2

)∥∥∥∥
=

1

2
‖(f ◦ φ)− (g ◦ φ)‖

=
1

2
‖(f − g) ◦ φ‖

=
1

2
‖f − g‖.

(150)

This shows T is Lipschitz with Lipschitz constant L = 1/2 (and so T is a contraction). Now let

f0 ∈ X be arbitrary and define the sequence {fn}∞n=0 by fn+1 = T (fn) for n ≥ 0. This gives

‖fn+1 − fn‖ = ‖T (fn)− T (fn−1)‖ = L‖fn − fn−1‖ = · · · = Ln‖f1 − f0‖. (151)
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Consequently, using the triangle inequality for n > m we have

‖fn − fm‖ ≤ ‖fn − fn−1‖+ · · ·+ ‖fm+1 − fm‖

= Ln‖f1 − f0‖+ · · ·+ Lm‖f1 − f0‖

= ‖f1 − f0‖Lm ·
n−m∑
k=0

Lk

≤ ‖f1 − f0‖Lm ·
∞∑
k=0

Lk

≤ ‖f1 − f0‖
1− L

· Lm.

(152)

But, taking the limit as m −→∞ on the right hand side,

lim
m→∞

‖f1 − f0‖
1− L

· Lm =
‖f1 − f0‖

1− L
· lim
m→∞

Lm =
‖f1 − f0‖

1− L
· 0 = 0. (153)

This shows the sequence {fn} is Cauchy. Because X is complete, there is f ∈ X such that fn −→ f .

Whence

f = lim
n→∞

fn = lim
n→∞

fn+1 = lim
n→∞

T (fn) = T
(

lim
n→∞

fn

)
= T (f) (154)

where we are able to bring the limit into the argument of T since the mapping is Lipschitz continuous

(as shown earlier). Thus, there exists a fixed point of T so that

f(x) = T (f)(x) = ex +
f(x2)

2
∀ x ∈ [0, 1]. (155)

We further claim f is unique. Let g ∈ X also be a fixed point of T . Then

‖f − g‖ = ‖T (f)− T (g)‖ =
1

2
‖f − g‖, (156)

which is only possible if ‖f − g‖ = 0, implying f = g. Hence the fixed point f is unique.

All that remains is to show X is complete. Let {fn} ⊂ X be a Cauchy sequence. Let ε > 0 be

given. Then there is N1 ∈ Z+ such that

‖fn − fm‖ < ε ∀ n,m ≥ N1. (157)

Let x ∈ [0, 1]. Then we claim the sequence {fn(x)} ⊂ R converges. By definition of the sup norm,

|fn(x)− fm(x)| ≤ sup
z∈[0,1]

|fn(z)− fm(z)| = ‖fn − fm‖ < ε ∀ n,m ≥ N1. (158)

So, {fn(x)} is Cauchy. Because R is complete, {fn(x)} converges. This implies we may define
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a function f to be the point-wise limit f(x) := lim
n→∞

fn(x). And, since the uniform convergence

of continuous functions converges to a continuous function, we conclude f ∈ C[0, 1]. Thus, X is

complete. �
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W12.10: Let A ∈Mn(C). State and prove under which conditions on A, the following identity holds:

det(eA) = exp(tr(A)). (159)

Here the matrix exponentiation is defined via the Taylor series

eA = 1 +A+A2/2! +A3/3! + · · · . (160)

You can assume it is known that this sum converges (entry-wise) for all complex matrices A.

Proof:

We claim the identity holds for all A ∈ Mn(C), which we verify as follows. Let J be the Jordan

canonical form of A. Then there is invertible P such that A = PJP−1. We claim Ak = PJkP−1

for each k ∈ Z+. This is given for k = 1. Now pick any k ∈ Z+ and suppose the claim holds. Then

Ak+1 = AAk = (PJP−1)(PJkP−1) = PJ(P−1P )JkP−1 = PJIJkP−1 = PJk+1P−1, (161)

and we have closed the induction. The principle of induction implies the claim. So, for any

polynomial fn(x) = a0 + a1x+ · · ·+ anx
n of degree n, we have

fn(A) = a0I + a1A+ · · ·+ anA
n

= a0PP
−1 + a1PJP

−1 + · · ·+ anPJ
nP−1

= P (a0I + a1J + · · ·+ Jn)P−1

= Pfn(J)P−1.

(162)

Thence

eA = lim
n→∞

n∑
k=0

Ak

k!
= lim

n→∞

n∑
k=0

P
Jk

k!
P−1

= lim
n→∞

P

(
n∑
k=0

Jk

k!

)
P−1

= P

(
lim
n→∞

n∑
k=0

Jk

k!

)
P−1

= PeJP−1

(163)

where we have used the fact P is linear (and thus continuous) to move the limit inside the paren-

theses.

We now show the diagonal entries of eJ are eλi for i = 1, . . . , n where the λi are the eigenvalues

of A. Indeed, the diagonal entries of J are λ1, . . . , λn. We claim (Jk)ii = (Jii)
k, and show this by
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induction. The case for k = 1 is trivial. Suppose k ∈ Z+ and (Jk)ii = (Jii)
k. Then

(Jk+1)ii = (JJk)ii =

n∑
j=1

Jij(J
k)ji. (164)

Since J is upper triangular, so also is Jk. This implies Jij = 0 for i > j and (Jk)ji = 0 for j > i.

Thence there product is zero whenever i 6= j and so

(Jk+1)ii = Jii(J
k)ii == Jii(Jii)

k = (Jii)
k+1, (165)

as desired. For a polynomial fn as above, this implies

(fn(J))ii = (a0I + a1J + · · ·+ anJ
n)ii = a0Iii + a1Jii + · · ·+ an(Jii)

n = fn(Jii). (166)

Thus,

(eJ)ii =

(
lim
n→∞

n∑
k=0

Jk

k!

)
ii

= lim
n→∞

(
n∑
k=0

Jk

k!

)
ii

= lim
n→∞

n∑
k=0

(Jii)
k

k!
= eJii = eλi . (167)

Finally, using properties of determinants, we see

det(eA) = det(PeJP−1) = det(P ) det(eJ) det(P−1) = det(P ) det(eJ) · 1

det(P )
= det(eJ) =

n∏
j=1

eλi= etr(J).

(168)

All that remains is to show tr(J) = tr(A). To show this, we verify commutativity of the trace. Let

M,N ∈Mn(C). Then

tr(MN) =

n∑
i=1

(MN)ii =

n∑
i=1

n∑
j=1

MijNji=

n∑
j=1

n∑
i=1

MijNji =

n∑
j=1

n∑
i=1

NjiMij=

n∑
j=1

(NM)jj = tr(NM).

(169)

Thus,

tr(A) = tr(PJP−1) = tr((JP−1)P ) = tr(J), (170)

as desired. This completes the proof. �
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S12.5: Prove that there is a unique continuous function y : [0, 1]→ R solving the equation

y(x) = ex +
y(x2)

2
, ∀ x ∈ [0, 1].

Proof:

First note C[0, 1] is complete, which follows from the fact that C(K) is complete for any compact

set K. Now define the operator T : C[0, 1]→ C[0, 1] for each f ∈ C[0, 1] by

(Tf)(x) = ex +
f(x2)

2
.

We note that ex is continuous and f(x2)/2 is a composition of continuous functions since x2 is

continuous. And, sums of continuous functions are continuous. So, (Tf) is, in fact, continuous.

Then

‖Tf − Tg‖∞ = sup{|Tf(x)− Tg(x)| | x ∈ [0, 1]} Definition of ‖ · ‖∞
= sup{|(f(x2)− g(x2)/2| | x ∈ [0, 1]} Definition of T

=
1

2
· sup{|f(x2)− g(x2)| | x ∈ [0, 1]} Factor out 1/2

=
1

2
· sup{|f(u)− g(u)| | u ∈ [0, 1]} Factor out 1/2

=
1

2
· ‖f − g‖∞,

where we let u = x2 and note u ≤ 1 · x ≤ 1 and u ≥ 0 · x = 0. Hence T is a contraction mapping

with Lipschitz constant L = 1/2. Then, by the Banach Fixed Point theorem, there exists a unique

y ∈ C[0, 1] such that y(x) = (Ty)(x) = ex + y(x2)/2. �
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S12.9: Prove that if f(x) is a continuous function on [a, b] and f(x) ≥ 0, then
∫ b
a f(x) = 0 implies that

f = 0.

Proof:

Suppose f is continuous on [a, b] and f(x) ≥ 0. We shall proceed to prove the claim by proving its

contrapositive. So, suppose f 6= 0. Then there is an x∗ ∈ [a, b] at which f(x∗) > 0. By continuity

of f , there exists δ > 0 with δ ≤ min{|x∗− a|, |x∗− b} such that, for x ∈ [a, b], if |x− x∗| < δ, then

|f(x∗) − f(x)| < f(x∗)/2. This implies f(x) > 0 whenever |x − x∗| < δ. Then, by linearity of the

integral, ∫ b

a
f(x) dx =

∫ x∗−δ

a
f(x) +

∫ x∗+δ

x∗−δ
f(x) dx+

∫ b

x∗+δ
f(x) dx

= 0 +

∫ x∗+δ

x∗−δ
f(x) dx+ 0 ≥

∫ x∗+δ

x∗−δ
f(x∗)/2 dx

> δf(x∗)

> 0.

Hence
∫ b
a f(x) dx 6= 0. The desired claim then follows. �
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S12.10:
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F12.1: Let {bn}∞n=1 be a sequence of real numbers with bounded partial sums, i.e., there is M < ∞ such

that for all N , |
∑N

n=1 | ≤ M , and let {an}∞n=1 be a sequence of positive numbers decreasing to 0. Prove

the series
∑
anbn converges.

Proof:

For each N ∈ N, define the N -th partial sum by

SN =
N∑
n=1

anbn

and the sequence {Bn} by

BN =

N∑
n=1

bn.

Let ε > 0 be given. To prove convergence of the partial sums {SN}, we must find an integer N∗

such that whenever M,N ≥ N1, |SM − SN | < ε. Then observe that we can rearrange the finite

sum SN to write

SN = aNBN +
N−1∑
n=1

Bn(an − an+1), (171)

which implies for M > N that

|SM − SN | =

∣∣∣∣∣aMBM − aNBN +
M−1∑
n=N

Bn(an − an+1)

∣∣∣∣∣ . (172)

Since the {an} converge to 0, we can pick N1 ∈ N such that |an − 0| < ε/4M whenever n ≥ N1.

Similarly, since {an} is Cauchy, we can pick N2 ∈ N such that |aj−ak| < ε/2M whenever j, k ≥ N2.

Then define N∗ = max{N1, N2}. Using the triangle inequality and bound on BN , this implies

|SM − SN | ≤ |aMBM − aNBN |+
M−1∑
n=N

|Bn| |an − an+1|

≤ aN
∣∣∣∣aMaN BM −BN

∣∣∣∣+
M−1∑
n=N

M |an − an+1|

≤ aN (|BM |+ |BN |) +M |aN − aM−1|

≤ 2MaN +M |aN − aM−1|

≤ ε/2 + ε/2

= ε

(173)

where we have used the fact that {an} is decreasing to assert aM/aN ≤ 1. Hence the sequence of

partial of partial sums {SN} is Cauchy and converges in R. �
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F12.5: A subset E of a metric space X is a Gδ set if E = ∩∞n=1Gn where each Gn is open in X. Prove that

Q is not a Gδ subset of R.

Proof:

By way of contradiction, supposeQ = ∩∞n=1Gn with each Gn open in X. Note each Gn is dense since

Q ⊆ Gn and Q is dense. Since Q is countable, let {an}∞n=1 enumerate Q. Then let Dn = R−{an}.
Then Dn is dense open. By the Baire category theorem,

(∩∞n=1Gn)︸ ︷︷ ︸
Q

⋂
(∩∞n=1Dn)︸ ︷︷ ︸

R−Q

6= ∅,
(174)

which gives our contradiction. �

F12.9: Let A be an m×n real matrix with m ≥ n. Let b ∈ Rm. Let M be the set of vectors x ∈ Rn which

minimize ‖Ax− b‖. Show that M = x0 +N where N is the kernel of A and x0 is an element of M .

Proof:

Let b̂ denote the projection of b into the image of A, i.e., define

b̂ = 〈b, e1〉 e1 + · · ·+ 〈b, ek〉 ek

where e1, . . . , ek with k ≤ m denotes an orthonormal basis for im A, the vectors e1, . . . , em denotes

the standard orthonormal basis for Rm, and we use the usual the scalar by product 〈v1, v2〉 = vT1 v2

for v1, v2 ∈ Rm. By definition, b̂ ∈ im A. And, (b − b̂) ∈ (im A)⊥ since it is orthogonal to every

vector in im A. This follows because 〈b− b̂, ej〉 = 〈b, ej〉 − 〈b, ej〉 = 0 for each j = 1, . . . , k. Using

this, we can apply the Pythagorean Theorem to see that for any z ∈ im A we have

‖b− b̂‖2 ≤ ‖b− b̂‖2 + ‖b̂− z‖2 = ‖(b− b̂) + (b̂− z)‖2= ‖b− z‖2 ⇒ ‖b− b̂‖ ≤ ‖b− z‖.

Thus, b̂ is the closest point in im A to b. Moreover, because b̂ ∈ im A, there exists x0 ∈ Rn such that

Ax0 = b̂. Thus, x0 ∈ M . So, not only have we shown that M is nonempty, but also that for each

x ∈M , Ax = b̂. If we also have y0 ∈M , then Ax0 = b̂ = Ay0 and so 0 = Ay0 −Ax0 = A(y0 − x0),

which implies (y0 − x0) ∈ N . That is, x0 + (y0 − x0) ∈ x0 +N , which implies M ⊆ x0 +N . Now,

pick any z ∈ N . Then A(x0 + z) = Ax0 +Az = b̂+ 0 = b̂ and so (x0 + z) ∈M . Hence M = x0 +N .

�
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2013

S13.4: Denote by hn the n-th harmonic number

hn = 1 +
1

2
+ · · ·+ 1

n
.

Prove that there is a limit

γ = lim
n→∞

(hn − ln(n)).

Proof:

By Taylor Theorem, for x ∈ [0, 1] there exists c ∈ (0, 1) such that

ex = e0 +
d

dx
[ex]x=0 · x+

d2

dx2
[ex]x=c ·

x2

2
= 1 + x+

ec

2
· x2.

This implies ex ≥ 1 + x ⇒ x = ln(ex) ≥ ln(1 + x), which follows from the fact ln(x) is increasing,

i.e., ln′(x) = 1/x > 0 ∀ x > 0. So, for each n ∈ N, 1/n ≤ 1 and so

− ln(1 + 1/n) = ln(n/(n+ 1)) = ln(1− 1/(n+ 1)) < −1/(n+ 1).

Now, noting

ln(n) =
n−1∑
k=1

ln(k + 1)− ln(k) =
n−1∑
k=1

ln(1 + 1/k),

we see

hn − ln(n) =

(
1

k
−
n−1∑
k=1

1

k

)
−
n−1∑
k=1

ln

(
1 +

1

k

)
=

1

n
+
n−1∑
k=1

1

k
− ln

(
1 +

1

k

)
.

Now note {hn − ln(n)}∞n=1 is increasing since 1/n − ln(1 + 1/n) ≥ 0 for each n ∈ N. Moreover,

using the above,

hn − ln(n) ≤ 1

n
+
n−1∑
k=1

1

k
− 1

k + 1
=

1

n

n−1∑
k=1

1

k2 + k
<

1

n

n−1∑
k=1

1

k2
.

Then, by the integral test, this series converges since

lim
n→∞

n−1∑
k=1

1

k2
≤ lim

n→∞

∫ n

1

dx

x2
= lim

n→∞
−1

x

∣∣∣∣n
1

= lim
n→∞

1− 1

n
= 1.

And, 1/n → 0 as n → ∞, which implies {hn − ln(n)}∞n=1 is also bounded above. Then, by the

Monotone Convergence Theorem, lim
n→∞

hn − ln(n) exists. �
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S13.11: Define the Fibonacci sequence Fn by F0 = 0, F1,= 1, and recursively by Fn = Fn−1 + Fn−2 for

n = 2, 3, 4, . . .

a) Show that the limit as n→∞ of Fn/Fn−1 exists and find its value.

b) Prove that F2n+1F2n−1 − F 2
2n = 1 for all n ≥ 1.

Proof:

a) NOT COMPLETE.

b) We proceed by induction. The base case for n = 1 holds since

F2(1)+1F2(1)−1 − F 2
2(1) = F3F1 − F 2

2 = 2 · 1− 12 = 1. (175)

For the inductive step, suppose the desired relation holds for case n. Then observe that

F2n+2F2n − F 2
2n+1 = (F2n+1 + F2n)F2n − (F2n + F2n−1)F2n+1

= F 2
2n − F2n+1F2n−1

= −1.

(176)

Similarly,

(F2n+2F2n−1)− F2n+1F2n = (F2n+1 + F2n)F2n−1 − (F2n + F2n−1)F2n

= F2n+1F2n−1 − F 2
2n

= 1.

(177)

Using the above, it follows that

F2(n+1)+1F2(n+1)−1 − F 2
2(n+1)

= F2n+3F2n+1 − F 2
2n+2

= (F2n+2 + F2n+1)(F2n + F2n−1)− (F2n+1 + F2n)2

=
[
F2n+2F2n − F 2

2n+1

]
+
[
F2n+1F2n−1 − F 2

2n

]
+
[
F2n+2F2n − F 2

2n+1

]
= 1− 1 + 1

= 1,

(178)

and the hypothesis follows from the principle of mathematical induction.

�
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F13.5: A function f : Rd → R is said to be convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) ∀ x, y ∈ Rd, t ∈ [0, 1]. (179)

Assume f is continuously differentiable such that

(∇f(x)−∇f(y)) · (x− y) ≥ 0 ∀ x, y,∈ Rd (180)

where ∇f is the gradient of f and · is the inner product on Rd. Prove that f is convex.

Proof:

Fix x, y ∈ Rd and define z : [0, 1] → Rd by z(t) = tx + (1 − t)y. Then define g : [0, 1] → R by

g(t) := f(z(t)) and h : [0, 1] → R by h(t) := tf(x) + (1 − t)f(y). To prove f is convex, we must

show (g − h)(t) ≤ 0 for t ∈ [0, 1]. First, by definition of g and h,

(g − h)(0) = f(y)− f(y) = 0 and (g − h)(1) = f(x)− f(x) = 0. (181)

We claim (g − h)′ is monotonically increasing. Then, by way of contradiction, suppose there is a

t∗ ∈ (0, 1) such that (g − h)(t∗) > 0. The mean value theorem implies there is a ξ1 ∈ (0, t∗) such

that

(g − h)′(ξ1)(t∗ − 0) = (g − h)(t∗)− (g − h)(0) ⇒ (g − h)′(ξ1) =
(g − h)t∗

t∗
> 0. (182)

Similarly, there is a ξ2 ∈ (t∗, 1) such that

(g − h)′(ξ2)(1− t∗) = (g − h)(1)− (g − h)(t∗) ⇒ (g − h)′(ξ2) = −(g − h)(t∗)

1− t∗
< 0. (183)

But, ξ1 < ξ2 and g′(ξ1) > g′(ξ2), contradicting the fact (g− h)′ is monotonically increasing. Hence

(g − h)(t) ≤ 0 for all t ∈ [0, 1].

All that remains is to verify (g − h)′ is monotonically increasing. Let t ∈ (0, 1). Then

g′(t) = ∇f(z(t)) · z′(t) = ∇f(z(t)) · (x− y) and h′(t) = f(x)− f(y). (184)

Pick t1, t2 ∈ (0, 1) with t1 < t2. Then

(g − h)′(t2)− (g − h)′(t1) = [∇f(z(t2))−∇f(z(t1))] · (x− y) (185)
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where we note h′(t2) = h′(t1). But,

z(t2)− z(t1) = [t2x+ (1− t2)y]− [t1x+ (1− t1)y] = (t2 − t1)(x− y). (186)

Then, applying the hypothesis,

(t2 − t1) ·
[
(g − h)′(t2)− (g − h)′(t1)

]
= (t2 − t1) [∇f(z(t2))−∇f(z(t1))] · (x− y)

= [∇f(z(t2))−∇f(z(t1))] · (z(t2)− z(t1))

≥ 0.

(187)

Dividing by (t2−t1) and then adding (g−h)′(t1) to each side, we conclude (g−h)′(t2) ≥ (g−h)′(t1).

That is, (g − h)′ is monotonically increasing. This completes the proof. �
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F13.01: When {an} is a sequence of positive real numbers, an > 0, define Pn =
∏n
j=1(1 + aj). Prove that

lim
n→∞

Pn exists and is a non-zero real number if and only if
∑∞

n=1 an <∞.

Proof:

First assume
∑∞

k=1 ak <∞. Because the sequence is monotonically increasing (recall ak > 0), the

monotone convergence theorem implies the sequence of partial sums {
∑n

k=1 ak}∞n=1 converges to a

limit positive a ∈ R. Let x > 0. Then Taylor’s theorem implies there is a ξx ∈ (0, x) such that for

the function f(x) = ex

ex = f(x) = f(0) + f ′(0)x+
f ′′(ξx)

2
· x2 = e0 + e0x+

eξx

2
· x2, (188)

which implies

1 + x = ex − eξx

2
· x2 ≤ ex. (189)

Then
n∏
k=1

1 + ak ≤
n∏
k=1

eak = exp

(
n∑
k=1

ak

)
≤ ea. (190)

But, this implies the sequence of partial products is bounded above. Moreover, because 1 + ak > 1

for each k, the sequence {
∏n
k=1 1+ak}∞n=1 is increasing. The monotone convergence theorem there-

fore implies the sequence converges. Hence lim
n→∞

Pn exists and is greater than unity.

Conversely, suppose lim
n→∞

Pn exists and equals, say, x ∈ R and note x > 1 since 1 + ak > 1 for each

k. Then
n∏
k=1

1 + ak ≤ x ⇒ ln(x) ≥ ln

(
n∏
k=1

1 + ak

)
=

n∑
k=1

ln(1 + ak). (191)

where we recall the logarithm function is positive and increasing for arguments greater than unity.

Since ln(1 + ak) > 0 for each k, the sequence of partial sums is monotonically increasing and, by

(191), is bounded above. Thence the monotone convergence theorem implies this sum converges.

This also yields that this sequence of partial sums is Cauchy, from which it follows that ln(1+ak) −→
0 as k −→∞. Hence ak −→ 0 as k −→∞. Consequently,

lim
k→∞

ln(1 + ak)

ak
= lim

z→0

ln(1 + z)

z
= lim

z→0

1
1+z

1
=

1

1 + 0
= 1 (192)

where we have made use of L’Hopital’s rule to evaluate the limit. From the direct comparison

lemma, we see the sequence of partial sums
∑n

k=1 ak converges if and only if the sequence of partial

sums
∑n

k=1 ln(1 + ak) converges. Because the latter sequence converges, we conclude the sequence

of partial sums
∑n

k=1 ak converges. This completes the proof. �
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2014

S14.1: a) Find a real matrix A whose minimal polynomial is equal to λ4 + 1.

b) Show that the usual real linear map determined by v 7→ Av has no non-trivial invariant subspace.

Proof:

a) This problem can be solved simply using the companion matrix of t4 + 1, i.e., let

A =


0 0 0 −1

1 0 0 0

0 1 0 0

0 0 1 0

 .

Then the characteristic polynomial is

χ(λ) = det(λI −A) =

∣∣∣∣∣∣∣∣∣∣
λ 0 0 −1

1 λ 0 0

0 1 λ 0

0 0 1 λ

∣∣∣∣∣∣∣∣∣∣
= (−1)1+1 · λ · λ3 + (−1)4+1 · (−1) · 13 = λ4 + 1.

Moreover, the characteristic polynomial factors over C as χ(λ) = (λ−
√
i)(λ+

√
i)(λ−i

√
i)(λ+

i
√
i) and, thus, has distinct roots. So, the minimal polynomial is of at least degree 4, but the

minimal polynomial divides the characteristic polynomial, which is also of degree 4. Hence

these polynomials are equal and so the minimal polynomial of A is λ4 + 1.

b) Suppose v 7→ Av has a non-trivial subspace. Then there is an eigenvector w of A, which then

has an associated eigenvalue. But, each of the eigenvalues of A are complex. Hence the linear

map v 7→ Av has no non-trivial invariant subspace. Part b) is supposedly note true.

�

S14.2: Suppose that S, T ∈ Hom(V, V ) where V is a finite dimensional vector space over R. Let (im S) be

the image of S and (ker S) be the kernel of S. Show that

dim(im S) + dim(im T ) ≤ dim(im (S ◦ T )) + dim V.
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Proof:

Let us use im S(K) = {Sk | k ∈ K} where K is a subspace of V . So, im (S ◦ T ) = im (S(im T )).

By the Fundamental Theorem of Linear Maps (FTOLM), it follows that

dim(im (S(ker T ))) + dim(ker S(ker T )) = dim(ker T ).

and so dim(im (S(ker T ))) ≤ dim(ker T ). This implies

dim(ker T ) + dim(im (S(im T ))) ≥ dim(im (S(ker T ))) + dim(im (S(im T )))= dim(im S)

where we have again used the FTOLM to assert dim(im S(ker T ))+dim(im S(im T )) = dim(im S).

Again using the FTOLM, dim V = dim(ker T ) + dim(im T ),

dim(im S) + dim(im T ) ≤ dim(im S(im T )) + dim(ker T ) + dim(im T )

= dim(im S(im T )) + dim V

= dim(im (S ◦ T )) + dim V,

and we are done. �

S14.3: Suppose that A,B ∈Mn×n(C) satisfy AB −BA = A. Show that A is not invertible.

Proof:

By way of contradiction, suppose A is invertible. Then

I = A−1A = A−1(AB −BA) = B −A−1BA ⇒ A−1BA = B − I.

However, recalling that tr(CD) = trDC for any C,D ∈Mn×n(C), we see the above implies

tr(A−1BA) = tr(A−1AB) = tr(B) =
n∑
i=1

bii

while

tr(B − I) =
n∑
i=1

(bii − 1) =

(
n∑
i=1

bii

)
− n.

But, then

tr(B − I) = tr(A−1BA) ⇔

(
n∑
i=1

bii

)
− n =

n∑
i=1

bii ⇔ n = 0,

a contradiction. Hence A cannot be invertible. �
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S14.4: Suppose that A,B ∈Mn×n(C). Show that the characteristic polynomials of AB and BA are equal.

Hint: One approach is to first show that it holds when B is invertible.

Proof:

First prove that the set of invertible matrices is dense in Mn×n(C). Let A,B ∈ Mn×n(C). Then,

by the density of invertible matrices in Mn×n(C), there exists a sequence of invertible matrices

{Bn} that converges to B. And, since the characteristic polynomial χ of a matrix is, in fact, a

polynomial, it is continuous. Hence

lim
n→∞

χ(ABn) = χ( lim
n→∞

ABn) = χ(AB).

However, for each Bn we have

det(ABn − λI) = det(BnB
−1
n ) det(ABn − λI)

= det(Bn) det(ABn − λI) det(B−1
n )

= det(Bn(ABn − λI)B−1
n )

= det(BnABnB
−1
n − λBnIB−1

n )

= det(BnA− λI).

Thus,

lim
n→∞

χ(ABn) = lim
n→∞

χ(BnA) = χ( lim
n→∞

BnA) = χ(BA).

Thus, χ(AB) = χ(BA) and we are done. �

S14.5: Suppose that V is a finite dimensional real inner product space with inner product 〈·, ·〉, that

L ∈ Hom(V, V ) and that b ∈ V is fixed. Suppose that u, v ∈ V both minimize D(x) = ‖L(x) − b‖. Show

that u− v ∈ kerL.

Proof:

First let b̂ denote the projection of b into the subspace im(L) ⊂ V , i.e., define b̂ = 〈b, e1〉 + · · · +
〈b, em〉 em where e1, . . . , em denotes an orthonormal basis for im(L). Clearly, b̂ ∈ im(L) since, by

definition, it is expressed as a linear combination of the ej ’s. Then (b− b̂) ∈ im(L)⊥ since for any

j = 1, . . . ,m we have 〈(b− b̂), ej〉 = 〈b, ej〉 − 〈b, ej〉 = 0, i.e., (b− b̂) is orthogonal to every vector in

im(L). It follows from the Pythagorean Theorem that, for each z ∈ im(L),

‖b− b̂‖2 ≤ ‖b− b̂‖2 + ‖b̂− z‖2 = ‖(b− b̂) + (b̂− z)‖2= ‖b− z‖2
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where the Pythagorean Theorem can be applied since b̂ ∈ im(L) and (b − b̂) ∈ im(L)⊥. Taking

square roots, this implies ‖b− b̂‖ ≤ ‖b− z‖. Hence b̂ is the closest point in im(L) to b. Moreover,

because b̂ ∈ im(L), there is a x0 ∈ V such that b̂ = L(x0). This shows that not only does D have

a minimizer x0, but that L(x0) = b̂.

So, suppose x, y ∈ V both minimize D. Then L(x) = b̂ = L(y) and so 0 = L(x)−L(y) = L(x− y),

which implies (x− y) ∈ ker(L), completing the proof. �

S14.6: Show that if A ∈ Mn×n(C) is normal, then A∗ = P (A) for some polynomial P (x) with complex

coefficients. Here A∗ is the conjugate transpose of A.

Proof:

Since A is normal, A and A∗ are simultaneously diagonalizable, i.e., there is a unitary matrix U so

that D1 = UAU∗ and D2 = UA∗U∗ where D1 and D2 are diagonal matrices. Then, using Lagrange

interpolation, we can construct a polynomial of degree n − 1 so that P (λi) = λi for i = 1, . . . , n

where each λi is an eigenvalue of A and λi is an eigenvalue of A∗. Since D1 and D2 are diagonal

matrices, it follows that

P (D1) =


P (λ1)

. . .

P (λn)

 =


λ1

. . .

λn

 = D2.

There are a0, a1, . . . , an−1 such that P (t) = a0 + a1t+ · · ·+ an−1t
n−1 and so

P (A) = a0I + a1A+ · · ·+ an−1A
n−1

= a0UU
∗ + a1UD1U

∗ + · · ·+ an−1UD
n−1U∗

= U
(
a0I + a1D1 + · · ·+Dn−1

)
U∗

= UP (D1)U∗

where we have used the easily verified relation thatAn = UDn
1U
∗. This implies P (A) = UP (D1)U∗ =

UD2U
∗ = A∗, as desired. �

S14.7: Find a doubly infinite sequence {an,m | n,m ∈ Z} such that for all m,
∑

n an,m = 0 and for all n,∑
m an,m = 0, with all these series converge absolutely, but such that

∑
n

∑
m |an,m| =∞.

Proof:
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Define the sequence am,n by

an,m =

sgn(m · n)

(
1− 1

|m|

)|n|(
1− 1

|n|

)|m|
if m · n 6= 0,

0 otherwise.

Note if m ∈ {−1, 0, 1}, then the summation
∑

n an,m is identically zero. Otherwise, for fixed m, let

r = (1− 1/|m|) so that∣∣∣∣∣
∞∑
n=1

an,m

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

sgn(m) ·
(

1− 1

|m|

)|n|(
1− 1

|n|

)|m|∣∣∣∣∣
<

∣∣∣∣∣
∞∑
n=1

sgn(m) ·
(

1− 1

|m|

)|n|∣∣∣∣∣
=
∞∑
n=1

rn

=
r−1

1− r

=
1

1− 1/|m|
· 1

1− (1− 1/|m|)

=
|m|2

|m| − 1

≤ |m|

where we note (1 − 1/|n|) < 1 and so (1 − 1/|n|)|m| < 1. So, this sequence is bounded above.

Moreover, the partial sums are monotonic since the sign of an,m is constant when m is fixed and

the sign of n does not change. Thus, by the monotone convergence theorem, the sum
∑∞

n=1 an,m

converges to some limit Sm. Since an,m = −a−n,m,
∑−∞

n=−1 an,m converges to −Sm. Moreover,∑∞
n=−∞ |an,m| = 2Sm and so the convergence is absolute. Thus, we may rearrange the order of
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terms in the series without changing the overall limit to see

∞∑
n=−∞

an,m =
∞∑
n=1

an,m +
−∞∑
n=−1

an,m

=
∞∑
n=1

an,m −
∞∑
n=1

a−n,m

=

∞∑
n=1

an,m + a−n,m

=
∞∑
n=1

an,m − an,m

= 0.

Due to the symmetry in the definition of an,m, we see also that
∑

m an,m = 0 for fixed n. Lastly,

observe that show that sum exceets some value proportional to m, and so double sum diverges...

�

S14.12: Assume [0, 1] = ∪∞n=1In where In = [an, bn] 6= ∅ and In ∩ Im = ∅ whenever n 6= m.

a) Let E = {an | n ≥ 1} ∪ {bn | n ≥ 1} be the set of endpoints of the intervals above. Prove E is

closed.

b) Prove no such family of intervals {In} can exist.

Proof:

a) We show E is closed by showing its complement Ec is open. By the Baire Category Theorem,

if a non-empty complete metric space is the countable union of closed sets, then one of these

closed sets has nonempty interior. Since [0, 1] is complete and nonempty, it follows that there

exists Ij with nonempty interior, i.e., bj > aj so that (aj , bj) 6= ∅. So, Ec = ∪∞n=1(an, bn) 6= ∅.
Let x ∈ Ec. Then there is k ∈ N such that x ∈ (ak, bk). Because (ak, bk) is open, there exists

r > 0 such that (xr, x + r) ⊆ (ak, bk). Hence x ∈ int(Ec) and so Ec ⊆ int(Ec). But, by

definition of interior, int(Ec) ⊆ Ec. Hence int(Ec) = Ec and so Ec is open, which implies E

is closed.

b) Suppose x ∈ E. Then there exists Ik such that x ∈ Ik, specifically, either x = ak or x = bk.

Then for each r > 0, B(x, r) contains points not in Ik since x ∈ bd(Ik). So, x is a limit

point of some Ij with j 6= k. But, because Ij is closed, x ∈ Ij . This contradicts the fact

that Ij ∩ Ik = ∅. Hence E must be empty, i.e., E = ∅. But, then In = ∅ for each n ∈ N, a

contradiction. Thus, there does not exists such a family of {In}.
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F14.2: Let A,B be two closed subsets of Rn such that A ∪ B and A ∩ B are connected. Prove that A is

connected.

Proof:

By way of contradiction, suppose A is not connected. Then there are nonempty open subsets

S1, S2 ⊂ Rn with A ⊆ S1 ∪ S2 and S1 ∩ S2 = ∅. Then

A ∩B ⊆ (S1 ∪ S2) ∩B = (S1 ∩B) ∪ (S2 ∩B).

By way of contradiction, suppose without loss of generality that S2 ∩ B = ∅. Then A − B = S2

and so

A ∪B = (A−B) ∪B = S2 ∪B (193)

where S2 and B are disjoint. But, this contradicts the fact A ∪B is connected. Hence S1 ∩B and

S2 ∩ B are nonempty. But, S1 ∩ B ⊂ S1 and S2 ∩ B ⊂ S2 and so (S1 ∩ B) ∩ (S2 ∩ B) = ∅. This

implies A ∩ B is not connected, a contradiction. Thus, the assumption that A is not connected

must be false and so we conclude A is connected. �
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F14.3: Let fn : [0, 1] → R be monotonically increasing continuous functions. Assume that fn converges

pointwise to a continuous function f : [0, 1]→ R. Prove that fn −→ f uniformly.

Proof:

Let ε > 0 be given. We must show there is an N ∈ Z+ such that

‖fn − f‖∞ < ε ∀ n ≥ N. (194)

Since [0, 1] is closed and bounded, Heine-Borel’s theorem implies it is compact. This, combined

with the fact f is continuous, yields that f is uniformly continuous. Hence there is a δ > 0 such

that for x, y ∈ [0, 1],

|x− y| < δ ⇒ |f(x)− f(y)| < ε/2. (195)

Now cover [0, 1] with the collection of open balls B(x, δ) for x ∈ [0, 1]. Since [0, 1] is compact, there

is a finite subcover, i.e., there are x1, . . . , xp ∈ [0, 1] such that

[0, 1] ⊂
p⋃
i=1

B(xi, δ). (196)

By the pointwise convergence of fn −→ f , for each i ∈ {1, . . . , p} there is an Ni such that

|fn(xi)− f(xi)| <
ε

2
∀ n ≥ Ni. (197)

Set N := max{N1, . . . , Np}. We claim this choice of N satisfies (194), which we verify as follows.

Let x ∈ [0, 1]. Then there is an index i such that x ∈ [xi, xi+1]. Since fn is monotonic,

fn(xi) ≤ fn(x) ≤ fn(xi+1). (198)

Then apply (197) to write

f(xi)−
ε

2
≤ fn(x) ≤ f(xi+1) +

ε

2
. (199)

And, by choice of the cover in (196), |xi − x| < δ and |xi+1 − x| < δ. By the continuity of f in

(195), this implies [
f(x)− ε

2

]
− ε

2
≤ fn(x) ≤

[
f(x) +

ε

2

]
+
ε

2
, (200)

from which it follows

|f(x)− fn(x)| < ε. (201)

Since this argument holds for arbitrary x ∈ [0, 1], it holds for all such x and we conclude (194)

holds. This completes the proof. �
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F14.4: Let fn : [−2, 2]→ [0, 1] be a sequence of convex functions. Show that there is a subsequence which

converges uniformly on [−1, 1].

Proof:

We claim the restriction {gn} of the sequence {fn} to [−1, 1] is equicontinuous and uniformly

bounded. By definition, since fn maps to [0, 1], ‖fn‖∞ ≤ 1 for all n ∈ Z+. Let ε > 0 be given.

Then {gn} is an equicontinuous family of function provided, given ε > 0, there is a δ > 0 such that

|x− y| < δ ⇒ |gn(x)− gn(y)| < ε ∀ x, y ∈ [−1, 1], n ∈ Z+. (202)

We first use a diagonalization argument to show there is a subsequence {fnk} that converges point-

wise on the rationals in [−1, 1].

Let ε > 0 be given. We must show there is an N ∈ Z+ such that

|fnk(x)− f(x)| < ε ∀ n ≥ N, x ∈ [−1, 1]. (203)

�

159 Last Modified: 4/18/2017



Basic Qual Notes Heaton

F14.5: Consider the following sequence:

a1 =
√

2 and an+1 =
√

2 + an ∀ n ≥ 1.

Prove that this sequence converges and find its limit.

Proof:

We claim that {an}∞n=1 is monotonically increasing and bounded above. Indeed, a1 =
√

2 < 2 and,

if an ≤ 2, then

an+1 =
√

2 + an ≤
√

2 + 2 = 2,

which closes in the induction. To see that {an}∞n=1 is increasing, observe that

a2
n − an = an(an − 1) ≤ 2(an − 1) ≤ 2(2− 1) = 2.

Thus, a2
n ≤ 2+an and so an ≤

√
2 + an = an+1. It follows from the Monotone Convergence Theorem

that {an} converges to some limit L. Then, since the function f(x) =
√

2 + x is continuous,

lim
n→∞

f(an) = f(L) =
√

2 + L.

But,

lim
n→∞

f(an) = lim
n→∞

an+1 = lim
n→∞

an = L.

This implies L =
√

2 + L and so 2 + L = L2, which implies (L− 2)(L+ 1) = 0. Since an ≥
√

2 for

each n ∈ N, it follows that the limit is L = 2. �
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F14.6: Let f : [0, 1]→ R be a C1 function. Prove that

lim
n→∞

n−1∑
k=0

∣∣∣∣f (k + 1

n

)
− f

(
k

n

)∣∣∣∣ =

∫ 1

0
|f ′(t)| dt. (204)

Solution:

Define g(t) := |f ′(t)| and observe g is continuous since it is the composition of continuous functions.

By definition, g is said to be Riemann integrable on [0, 1] provided

sup
P∈Π

L(g, P ) = inf
P∈Π

U(g, P ) (205)

where Π is the set of all partitions of [0, 1] and, for a partition P = {I1, . . . , Ik} ∈ Π,

L(g, P ) :=

k∑
i=1

(
inf
x∈Ii

g

)
|Ii| and U(g, P ) :=

k∑
i=1

(
sup
x∈Ii

g

)
|Ii|. (206)

When (205) holds, we write the integral of g as∫ 1

0
g(t) dt := sup

P∈Π
L(g, P ) = inf

P∈Π
U(g, P ). (207)

We first show (205) holds for our choice of g. It suffices to find a sequence of partitions Pn such

that

lim
n→∞

U(g, Pn) = sup
P∈Π

L(g, P ). (208)

Let ε > 0 be given. Since g is continuous on [0, 1], which is closed and bounded and therefore

compact, g is uniformly continuous. So, there is a δ > 0 such that for all x, y ∈ [0, 1],

|x− y| ≤ δ ⇒ |g(x)− g(y)| ≤ ε. (209)

By the Archimedean property of R, there is a N ∈ Z+ such that 1/N < δ. For n ∈ Z+ set

Pn = {I0, . . . , In−1} ∈ Π where Ii = [i/n, i+ 1/n]. Then for all n ≥ N we discover

U(g, Pn) =

n−1∑
k=0

(
sup
x∈Ik

g

)
|Ik| ≤

n−1∑
k=0

(
inf
x∈Ik

g + ε

)
|Ik|

=

n−1∑
k=0

(
inf
x∈Ik

g

)
|Ik|+ ε

n−1∑
k=0

|Ik|

= L(g, Pn) + ε

≤ sup
P∈Π

L(g, P ) + ε

(210)
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where the first inequality follows from (209). And, by definition of U , U(g, Pn) ≥ supP∈Π L(g, P )

for every n ∈ Z+. Hence ∣∣∣∣U(g, Pn)− sup
P∈Π

L(g, P )

∣∣∣∣ ≤ ε ∀ n ≥ N, (211)

and so we obtain the limit in (208). A corresponding limit holds for L(g, Pn), which is found by

similar argument.

For k ∈ Z, the mean value theorem implies there exists ξk ∈ (k/n, (k + 1)/n) such that∣∣∣∣f (k + 1

n

)
− f

(
k

n

)∣∣∣∣ =

∣∣∣∣f ′(ξk) · (k + 1

n
− k

n

)∣∣∣∣ = g(ξk) ·
1

n
. (212)

So,

n−1∑
k=0

∣∣∣∣f (k + 1

n

)
− f

(
k

n

)∣∣∣∣ =

n−1∑
k=0

g(ξk) · 1

n
=

n−1∑
k=0

g(ξk) · |Ik| ≤
n−1∑
k=0

(
sup
x∈Ik

g

)
· |Ik| = U(g, Pn). (213)

We obtain a corresponding inequality with L(g, Pn). Hence applying (208) and the corresponding

limit for L(g, Pn), we see

∫ 1

0
g(t) dt ≤ lim

n→∞

n−1∑
k=0

∣∣∣∣f (k + 1

n

)
− f

(
k

n

)∣∣∣∣ ≤ ∫ 1

0
g(t) dt, (214)

from which we conclude

lim
n→∞

n−1∑
k=0

∣∣∣∣f (k + 1

n

)
− f

(
k

n

)∣∣∣∣ =

∫ 1

0
g(t) dt, (215)

as desired.

�
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F14.7: Among all the solutions to the system 1 1 1 1

2 3 5 7

−2 −1 1 3

x =

 2

7

−1

 , (216)

find the solution with minimal length.

Solution:

Observe this linear system is equivalent to 1 1 1 1 2

2 3 5 7 7

−2 −1 1 3 −1

 ∼
 1 1 1 1 2

0 1 3 5 5

0 0 0 0 0

 (217)

where we note the third equation of the given linear system is equal to the second equation minus

the four times the first equation. Define

A :=

(
1 1 1 1

0 1 3 5

)
and b :=

(
2

5

)
(218)

and observe A has full rank. We seek to solve

min ‖x‖ such that Ax = b. (219)

Since ‖ · ‖ is convex, we can equivalently minimize ‖x‖2/2 such that Ax = b, which we do by

applying Lagrange multipliers. The Lagrangian for this problem is given by

L(x, λ) =
xTx

2
+ λT (Ax− b) =

xTx

2
+ (ATλ)Tx− λT b. (220)

We seek to minimize L over x and λ. Due to convexity, it suffices to find a critical point of L. At

such a point (x̄, λ̄),

0 = ∇xL(x̄, λ̄) = x̄+AT λ̄ ⇒ x̄ = −AT λ̄, (221)

and

0 = ∇λL(x̄, λ̄) = Ax̄− b = A(−AT λ̄)− b ⇒ λ̄ = −(AAT )−1b (222)

where the inverse of AAT is well-defined since A has full rank. Hence, by back substituting, we

conclude the solution is given by

x̄ = AT (AAT )−1b, (223)

which can be computed explicitly using the definitions of A and b above. �
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F14.8: Compute the eigenvalues of the following n× n matrix:

M =



k 1 1 · · · 1

1 k 1 · · · 1

1 1 k · · · 1
...

...
...

. . .
...

1 1 1 · · · k


.

Use the eigenvalues to compute det(M).

Proof:

Note that M = (k − 1)I + 1 where I denotes the identity matrix and 1 is the matrix of all ones.

Of course, (k − 1) is an eigenvalue of I since I is the identity. Also, for each v observe that

1v =

(
n∑
i=1

vi

)
1
...

1

 .

This gives two possibilities for eigenvectors. Either
∑n

i=1 vi = 0 or
∑n

i=1 vi 6= 0 and vi = c for

i = 1, . . . , n. If it is the latter, then

Mv = ((k − 1)I + 1)v = (k − 1)v + nv = (n+ k − 1)v

and so (n + k − 1) is an eigenvalue of M . Note well the dimension of this eigenspace is 1 since it

occurs precisely for scalars of the vectors of all ones. In the other case, if
∑n

i=1 vi = 0, then

Mv = ((k − 1)I + 1)v = (k − 1)v + 0v = (k − 1)v,

which implies k − 1 is an eigenvalue of M . Since this is the only other eigenvalue of 1, it must

follow that it has dimension n − 1. Since det(M) is the product of the eigenvalues of M , we find

det(M) = (n+ k − 1)(k − 1)n−1. �
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F14.10: What is the largest number of 1’s an invertible 0-1 matrix of size n× n can have? You must show

both that this number is possible and that no larger number is possible.

Proof:

The largest number of 1’s an invertible 0-1 matrix of size n × n can have is n2 − n. Define the

vector vi to have a 0 in the i-th position and zeros elsewhere so that vi contains (n − 1) ones.

Then we claim the matrix [v1 v2 · · · vn] is invertible. To verify this, it suffices to show the vi are

independent. Suppose there are scalars a1, . . . , an ∈ R with aj 6= 0 such that

0 =

n∑
i=1

aivi ⇒ vj = − 1

aj
·

n∑
i=1,i 6=j

aivi (224)

By way of contradiction, suppose there is a 0-1 matrix with more than n2 − n ones. �
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F14.11: Suppose a 4 × 4 integer matrix has four distinct real eigenvalues λ1 > λ2 > λ3 > λ4. Prove that

λ2
1 + λ2

2 + λ2
3 + λ2

4 ∈ Z.

Proof:

Since Z is a ring closed under multiplication and addition, it follows that M2 has elements in Z.

Let vi denote the eigenvector corresponding to λi for i = 1, 2, 3, 4. Then vi is an eigenvector of M2

since

M2vi = M(Mvi) = M(λivi) = λ2
i vi ∀ i = 1, 2, 3, 4.

Since the trace of a matrix is defined to be the sum of its diagonal elements, it follows that

tr(M2) ∈ Z. However, the trace of a matrix is also the sum of its eigenvalues. Hence

λ2
1 + λ2

2 + λ2
3 + λ2

4 = tr(M2) ∈ Z,

and we are done. �
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F14.12: Let A = (aij)1≤i,j≤n where aij = 1/(i+ j − 1). Prove that A is positive definite.

Proof:

We must show 〈Ax, x〉 ≥ 0 for all x ∈ V where we assume V = Cn. Defining v = (1, t, . . . , tn−1),

we discover ∫ 1

0
(vT v)ij dt =

∫ 1

0
ti+j−2 dt =

1

i+ j − 1
= aij .

This implies, for x ∈ Cn,

〈Ax, x〉 = (Ax)∗x

= x∗A∗x

= x∗Ax

= x∗
(∫ 1

0
vT v dt

)
x

=

∫ 1

0
x∗vT vx dt

=

∫ 1

0
(vx)∗vx dt

=

∫ 1

0
‖vx‖2 dt.

The first equality holds by definition of the scalar product in Cn, the second by definition of the

conjugate transpose, and the next by the fact A is hermitian. The following equality holds by

substitution for each entry in A. Then, using linearity we bring x∗ and x inside the integral. Then

we use the definition of the norm to substitute and obtain the final equality. And, since ‖vx‖2 ≥ 0

for all x ∈ Cn, it follows that
∫ 1

0 ‖vx‖
2 dt ≥ 0. Thus,〈Ax, x〉 ≥ 0, as desired. �
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2015

S15.1: Let f : [0,∞)→ [0,∞) be continuous with f(0) = 0. Show that if

f(t) ≤ 1 +
1

10
f(t)2 ∀ t ∈ [0,∞),

then f is uniformly bounded throughout [0,∞).

Proof:

By way of contradiction, suppose f is not uniformly bounded. Then there exists b > 0 such that

f(b) ≥ 6. Then, noting that f(0) = 0, it follows from the Intermediate Value Theorem that there

exists x ∈ [0, b] such that f(x) = 5 since 5 ∈ (f(0), f(b)). However, this implies

5 = f(x) ≤ 1 +
1

10
f(x)2 = 1 +

1

10
· 25 = 3.5,

which is a contradiction. Hence f is uniformly bounded. �

S15.4: Let f [0, 1]→ R be a function satisfying the intermediate value property, namely, whenever 0 ≤ a <
b ≤ 1 and y lies between f(a) and f(b), there exists x ∈ (a, b) such that f(x) = y. Assume that for any

y ∈ R, the pre-image f−1({y}) is closed. Prove that f is continuous.

Proof:

Let ε > 0 be given. Pick x0 ∈ [0, 1]. Pick a0 = 0. Since (f(x0) + f(a1))/2 is contained between

f(x0) and f(a1), there exists a2 between x0 and a1 such that f(a2) = (f(x0) + f(a1))/2. Then

|f(x0)− f(a2)| =
∣∣∣∣f(x0)− f(a1)

2

∣∣∣∣ .
Continuing to choose an in this fashion, through induction it follows that

|f(x0)− f(an)| = 2−n |f(x0)− f(a1)| .

Note an ≤ x0 for each n ∈ N. We can define a similar sequence {bn} with the single change being

that b0 = 1. Then x0 ∈ [an, bn] for each n ∈ N.

We claim f is monotonic. By way of contradiction, suppose otherwise. Then there exists a, b, c ∈
[0, 1] such that c is between a and b, but f(c) is not between f(a) and f(b).

Without loss of generality, suppose b > a. Then pick y between f(a) and f(b). Then there exists

c ∈ (a, b) such that f(c) = y.

�
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S15.5: Let f : [1,∞)→ [0,∞) be bounded and monotonically decreasing with lim
x→∞

f(x) = 0. Show that

∫ N+1

1
f(x) dx−

N∑
n=1

f(n)

converges to a finite limit as N →∞.

Proof:

We first show that the given sequence is bounded. Denote the N -th term of our sequence by aN ,

i.e.,

aN =

∫ N+1

1
f(x) dx−

N∑
n=1

f(n).

Indeed, using the definition of Riemann integrable,

aN = inf
P
U(f, P )−

N∑
n=1

f(n)≤
N∑
n=1

f(n)−
N∑
n=1

f(n) = 0

where U(f, P ) denotes the upper Riemann sum using partition P of the interval [1, N + 1] and we

have used the fact that f is monotonically decreasing to assert
∑N

n=1 f(n) is an upper Riemann

sum. Similarly,
∑N

n=1 f(n+ 1) is a lower Riemann sum for this integral and so

aN = sup
P
L(f, P )−

N∑
n=1

f(n)≥
N∑
n=1

f(n+ 1)−
N∑
n=1

f(n) = f(N + 1)− f(1)≥ −f(1).

Thus, aN ∈ [−f(1), 0] for each N ∈ N. Now we claim {aN}∞N=1 is monotonically decreasing. To

see this, observe that, by the linearity of the integral,

aN+1 =

(∫ N+1

N
f(x) dx− f(N)

)
+

(∫ N+1

1
f(x) dx−

N∑
n=1

f(n)

)

=

∫ N+1

N
f(x) dx− f(N) + aN

≤ aN

where we use the fact that ∫ N+1

N
f(x) dx ≤

∫ N+1

N
f(N) dx = f(N).
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Hence {aN}∞N=1 is a bounded monotonically decreasing sequence. By the Monotone Convergence

Theorem, {aN}∞N=1 must converge to some limit in [−f(1), 0], and we are done.

Below we present an alternative solution.

Define SN to be the N -th term of our sequence and note

SN =

∫ N+1

1
f(x) dx−

N∑
n=1

f(n)=
N∑
n=1

∫ n+1

n
f(x) dx− f(n).

Since fn is monotonically decreasing and maps to nonnegative numbers,∣∣∣∣∫ n+1

n
f(x) dx− f(n)

∣∣∣∣ = f(n)−
∫ n+1

n
f(x) dx ≤ f(n)− f(n+ 1)

which implies for M > N we have

|SM − SN | =

∣∣∣∣∣
M∑

n=N+1

∫ n+1

n
f(x) dx− f(n)

∣∣∣∣∣
≤

M∑
n=N+1

∣∣∣∣∫ n+1

n
f(x) dx− f(n)

∣∣∣∣
≤

M∑
n=N+1

f(n)− f(n+ 1)

= f(M)− f(N + 1).

But, lim
n→∞

f(n) = 0, which implies f(n) is Cauchy, i.e., given ε > 0, there exist K ∈ N such that

for all M,N ≥ K we have |f(M)− f(N)| ≤ ε. Thus, for M,N ≥ K

|SM − SN | ≤ |f(M)− f(N + 1)| ≤ ε,

and so {SN} is Cauchy. Since R is complete, SN converges to a finite limit and we are done. �
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S15.6: Prove that the integral equation

f(t) = et
2

+
1

2

∫ 1

0
cos(s)f(s) ds

admits a unique continuous solution f : [0, 1]→ R.

Proof:

We proceed by applying the Banach Fixed Point theorem. To do this, we verify C[0, 1] is complete

and define a contraction T : C[0, 1]→ C[0, 1]. First let {fn} be a Cauchy sequence in C[0, 1]. For

each x ∈ [0, 1], {fn(x)} is a Cauchy sequence in R and since R is complete its limit is in R. Hence

the pointwise limit lim
n→∞

fn(x) exists. To see that fn −→ f in norm, note that because {fn} is

Cauchy, there is N ∈ N such that

‖fn − fm‖∞ < ε/3 < ε ∀ m,n ≥ N. (225)

But, since norms are continuous, we have the limit lim
m→∞

‖fn − fm‖ = ‖fn − f‖ and so

‖fn − f‖ < ε/3 < ε ∀ n ≥ N, (226)

as desired. We now must show that f is continuous. Since fN is continuous on a compact set, it is

uniformly continuous. Thus, there is a δ > 0 such that for x, y ∈ [0, 1],

|x− y| < δ ⇒ |fN (x)− fN (y)| < ε/3. (227)

Using N as above, this implies that, whenever |x− y| < δ,

|f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)| < ε

3
+
ε

3
+
ε

3
= ε. (228)

Thus, f ∈ C[0, 1] and so C[0, 1] is complete.

(continued on next page)
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Now define the operator T : C[0, 1]→ C[0, 1] for each f ∈ C[0, 1] by

(Tf)(t) = et
2

+
1

2

∫ 1

0
cos(s)f(s) ds,

and T (f) is continuous since it is the composition of several continuous functions. For f, g ∈ C[0, 1],

observe that

‖Tf − Tg‖∞ =

∥∥∥∥1

2

∫ 1

0
cos(s)[f(s)− g(s)] ds

∥∥∥∥
∞

≤ 1

2

∥∥∥∥∫ 1

0
���

��:1
‖ cos(s)‖∞ · ‖f − g‖∞ ds

∥∥∥∥
∞

=
1

2
‖f − g‖∞.

Hence T is a contraction with Lipschitz constant 1/2. Since T is a contraction and C[0, 1] is

complete, the Banach Fixed Point theorem implies for any f0 ∈ C[0, 1] (e.g., f = 0), the sequence

defined by fn+1 = T (fn) for n ≥ 1 converges to a unique fixed point f of T , i.e., lim
n→∞

fn = f and

T (f) = f . This means there is a unique f ∈ C[0, 1] such that

f(t) = T (f)(t) = et
2

+
1

2

∫ 1

0
cos(s)f(s) ds,

and we are done. �
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S15.7: Let f(x, y, z) = 9x2 + 6y2 + 6z2 + 12xy − 10xz − 2yz. Does there exists a point (x, y, z) such that

f(x, y, z) < 0?

Solution:

No, there does not exist such a point. By way of contradiction, suppose there does. Since f is

continuous �
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S15.12: Let

M =

(
3 5

1 −1

)
.

a) Compute exp(M).

b) Does there exists a real 2× 2 matrix A such that M = exp(A)?

Solution:

a) First we diagonalize M . NOT COMPLETE.

b) We begin with the following lemma:

Lemma: Let A ∈ Matn×n(R). 1 is not an eigenvalue of A iff I −A is invertible.

We first show I − A is invertible iff 1 is not an eigenvalue of A. We argue by proving the

contrapositive of each implication in this claim. First suppose 1 is an eigenvalue of A. Then

there is nonzero v ∈ Cn such that (I − A)v = 0, implying that I − A is not one-to-one and,

thus, not invertible. Hence if A is invertible, then 1 is not an eigenvalue of A. Now suppose

A is singular. Then det(I − A) = 0, which implies 1 is an eigenvalue of A. Hence if 1 is not

an eigenvalue of A, then I −A is invertible. �

Now define Q = I −M . Then the sought matrix A exists iff ln(M) = ln(I −Q) exists. By the

above lemma, I −Q is invertible precisely when 1 is not an eigenvalue of Q.

Show eigenvalues are 3 and -3.

�
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F15.1 Let {an}∞n=1 be a sequence of positive numbers such that an+m ≤ an + am, m, n ≥ 1.

Prove that lim
n→∞

an/n exists by showing lim
n→∞

an
n

= infn≥1
an
n
.

Proof:

Let ` := infn≥1
an
n and ε > 0 be given. We must show there is a N ∈ Z+ such that∣∣∣an

n
− `
∣∣∣ < ε whenever n ≥ N . (229)

Since ` is the greatest lower bound of an/n, there exists a K ∈ Z+ such that∣∣∣∣f(K)

K
− `
∣∣∣∣ < ε

2
. (230)

Then by the Archimedean property of R, there is a L ∈ Z+ such that

1

L
<
MKε

2
where M := max

1≤r≤K
{ar}. (231)

This implies
ar
KL

<
ε

2
for 1 ≤ r ≤ K. (232)

We claim (229) holds if N := KL. To see this, let n ≥ N . By Euclid’s division lemma, there are

nonnegative q, r ∈ Z such that n = Kq + r with r < K. And, by choice of N , we know q ≥ L.

Using subaddtivity, we see

an
n
≤
aqK
n

+
ar
n

=
aqK

qK + r
+

ar
qK + r

. (233)

And, from (232), we have
ar

qK + r
≤ ar
qK
≤ ar
LK
≤ ε

2
. (234)

Applying the lemma below, we know

aqK
qK + r

≤
aqK
qK
≤ qaK

qK
=
aK
K
≤ `+

ε

2
. (235)

Combining (233)-(235), we see

an
n
≤ `+

ε

2
+
ε

2
= `+ ε whenever n ≥ N, (236)

which implies (229) holds. This completes the proof. �

(Lemma on next page.)
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Lemma: If {an}∞n=1 is subadditive, then amn ≤ man for all m,n ≥ 1.

Proof:

We verify this by induction on n. The base case holds trivially. Suppose now this claim holds for

some n ∈ Z+. Then observe that

am(n+1) ≤ amn + am ≤ nam + am = (n+ 1)am, (237)

and we have closed the induction. The claim follows by the principle of mathematical induction.

�
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F15.2: Let a, b ∈ R obey a < b. Show that if g, h : [a, b] → R are continuous with h ≥ 0, then there is

c ∈ [a, b] such that ∫ b

a
g(x)h(x) dx = g(c)

∫ b

a
h(x) dx.

Proof:

Since g is defined on the closed interval [a, b], it follows from the Extreme Value Theorem that g

takes on a maximum and minimum value on the interval. Let M and m denote this maximum and

minimum, respectively. Then, using the linearity of the integral

m

∫ b

a
h(x) dx =

∫ b

a
m · h(x) dx ≤

∫ b

a
g(x)h(x) dx ≤

∫ b

a
M · h(x) dx = M

∫ b

a
h(x) dx.

If h = 0, then 0 = m · 0 ≤
∫ b
a g(x)h(x) dx ≤M · 0 = 0, which implies the desired relation holds for

each c ∈ [a, b]. So, suppose this is not the case. Then there exists x∗ ∈ [a, b] such that h(x∗) > 0.

Because h is continuous, there exists δ > 0 such that |h(x)−h(x∗)| ≤ h(x∗)/2 whenever |x−x∗| ≤ δ,
which implies h(x) ≥ h(x∗)/2 whenever |x− x∗| ≤ δ. Hence∫ b

a
h(x) dx ≥

∫ x∗+δ

x∗−δ
h(x) dx ≥

∫ x∗+δ

x∗−δ

h(x∗)

2
dx = 2δ · h(x∗)

2
= δh(x∗) > 0.

Thus, our above relation can be rewritten as

m ≤
∫ b
a g(x)h(x) dx∫ b
a h(x) dx

≤M.

By the Intermediate Value Theorem, it follows that there exists c ∈ [a, b] such that

g(c) =

∫ b
a g(x)h(x) dx∫ b
a h(x) dx

,

which implies ∫ b

a
g(x)h(x) dx = g(c)

∫ b

a
h(x) dx,

and we are done. �
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F15.3: Let {fn} be a sequence of continuous functions fn : [−1, 1]→ [0, 1] such that for each x ∈ [−1, 1],

1) the sequence of numbers {fn(x)}∞n=1 is non-increasing, and

2) lim
n→∞

fn(x) = 0.

Define

gn(x) :=
n∑

m=1

(−1)mfm(x).

Prove that gn(x) converges to some g(x) ∈ R for each x ∈ [−1, 1] and that the function g[−1, 1]→ R thus

defined is continuous on [−1, 1].

Proof:

Let x ∈ [−1, 1]. We first show that lim
n→∞

gn(x) exists. Since R is complete, it suffices to show that

the sequence {gn(x)} is Cauchy. Let ε > 0 be given and define A0 := 0 and

Am :=
m∑
j=1

(−1)m ∀ m ≥ 1, (238)

noting this implies |Am| ≤ 1 for all m ≥ 0. Then, for n, p ∈ Z+ with n > p, we have

|gn(x)− gp(x)| =

∣∣∣∣∣∣
n∑

m=p+1

(−1)mfm(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

m=p+1

(Am −Am−1) fm(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

m=p+1

Amfm(x)−
n−1∑
m=p

Amfm+1(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n−1∑

m=p+1

Am [fm(x)− fm+1(x)] +Anfn(x)−Apfp+1(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
n−1∑

m=p+1

Am [fm(x)− fm+1(x)]

∣∣∣∣∣∣+ |Anfn(x)|+ |Apfp+1(x)|

≤

∣∣∣∣∣∣
n−1∑

m=p+1

fm(x)− fm+1(x)

∣∣∣∣∣∣+ |fn(x)|+ |fp+1(x)|

= |fp+1(x)− fn(x)|+ |fn(x)|+ |fp+1(x)|

≤ 4|fp+1(x)|.

(239)

Since {fn} converges to 0, there is N ∈ Z+ such that |fn − 0| < ε/4 for all n ≥ N . Consequently,
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for n, p ≥ N with n ≥ p we have

|gn(x)− gp(x)| ≤ 4|fp+1| < ε. (240)

Thus, {gn(x)} is Cauchy. Since x was arbitrarily chosen in [−1, 1], we may, thus, define a function

g(x) := lim
n→∞

gn(x) for each x. This shows pointwise convergence of the sequence of functions {gn}
to the limit g.

MUST FINISH AND SHOW CONVERGENCE IS UNIFORM SO WE GET THAT g IS CON-

TINUOUS. �
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F15.4 Let fn : [0,∞)→ R be functions defined recursively by f1(x) := 0 and

fn+1(x) := e−2x +

∫ x

0
fn(t)e−2t dt, n ≥ 1. (241)

Show that f(x) := lim
n→∞

fn(x) exists for all x ≥ 0 and identify f explicitly.

Proof:

We first show f exists. Define a mapping T : C[0,∞)→ C[0,∞) by

T (f) := e−2x +

∫ x

0
f(t)e−2t dt. (242)

Since C[0,∞) is complete, if we can show that T is a contraction, then the Banach Fixed Point

theorem states T has a fixed point and that for any f1 ∈ C[0,∞), the sequence defined by

fn+1 = T (fn) ∀ n ≥ 1 (243)

will converge to a fixed point of T , implying the limit lim
n→∞

fn exists. For f, g ∈ C[0,∞) we discover

‖T (f)− T (g)‖∞ =

∥∥∥∥∫ x

0
(f(t)− g(t))e−2t dt

∥∥∥∥
∞

≤
∥∥∥∥∫ x

0
‖f − g‖∞e−2t dt

∥∥∥∥
∞

= ‖f − g‖∞ −∞
∣∣∣∣∫ x

0
e−2t dt

∣∣∣∣
≤ ‖f − g‖∞ −∞

∣∣∣∣∫ ∞
0

e−2t dt

∣∣∣∣
=

1

2
‖f − g‖∞

(244)

Hence T is a contraction. Because the sequence defined in (243) is precisely the sequence defined

in the problem statement, we see f(x) := lim
n→∞

fn(x) exists for all x ≥ 0.

We now identify f explicitly. Since f = T (f), we differentiate to find

df

dx
= −2e−2x + f(x)e−2x = (f(x)− 2)e−2x ⇒ df

f − 2
= e−2x dx. (245)

Integrating gives∫ f(x)

f(0)

df

f − 2
=

∫ x

0
e−2x dx ⇒ −[f(x)− 2] =

f(x)− 2

f(0)− 2
= exp

(
−1

2

[
e−2x − 1

])
(246)
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where we know f(0) = T (f(0)) = e−2·0 + 0 = 1. Hence

f(x) = 2− exp

(
−1

2

[
e−2x − 1

])
(247)

�
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F15.6: Let X := R\{0}. Find a metric ρ on X with the following properties:

i) (X, ρ) is a complete metric space, and

ii) if {xn}∞n=1 ⊂ X and x ∈ X, then

lim
n→∞

|xn − x| = 0 ⇔ xn → x in (X, ρ).

Prove both properties, as well as all of your other assertions, in full detail.

Proof:

Define ρ to be the discrete metric, i.e.,

ρ(x, y) =

1 if x 6= y,

0 if x = y.

This metric satisfies the properties of a metric. Indeed, ρ equal to zero precisely when x = y

and is positive otherwise. Further, ρ is symmetric. All that remains is to verify that the triangle

inequality holds, i.e., we need

ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

If x = z then this is trivial. Suppose otherwise. Then, if x = y, we have ρ(x, z) = ρ(y, z) =

0 + ρ(y, z) = ρ(x, y) + ρ(y, z) and similarly when y = z. If x 6= y 6= z, then 1 = ρ(x, z) < 2 =

ρ(x, y) + ρ(y, z). In each case, the triangle inequality holds.

Now we claim that (X, ρ) is complete. Let {xn}∞n=1 be a Cauchy sequence in X. Then there is a

N ∈ N such that |xm−xn| < 1
2 whenever m,n ≥ N . With the discrete metric, this occurs precisely

when xn = xm for all n,m ≥ N . That is, if {xn}∞n=1 is Cauchy in the discrete metric, then there

exists an integer N ∈ N at which xn = xN for all n ≥ N . Hence {xn} → xN , which is in X.

Now suppose {xn} ⊂ X, x ∈ X and lim
n→∞

|xn − x| = 0. Then there exists N ∈ N such that

|xn − x| < 1
2 for all n ≥ N . This only occurs when xn = x ∀ n ≥ N , and so xn → x ∈ (X, ρ). Now

suppose xn → x. Then, in the discrete metric, there is a an integer N ∈ N at which xn = x for all

n ≥ N . But, for such n, ρ(xn, x) = |xn − x| = 0. Hence lim
n→∞

|xn − x| = 0 and we are done. �
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F15.7: Let A,B be two 4 × 5 matrices of rank 3, and let C = ATB (this is a 5 × 5 matrix). Find all

possible values r for the rank of C. To be precise, if the rank r is possible, find an explicit example of such

matrices. Then prove that all other values are impossible.

Proof:

Note that AT : R4 → R5 has rank 3 and so its nullity must be 1 by the rank-nullity theorem.

Similarly, since B : R5 → R4 and the rank of B is 5, B must have nullity 2. This leaves two cases.

First, if (ker(A))∩(ker(B)) = ∅, then C must have nullity 3. Alternatively, if (ker(A))∩(ker(B)) 6= ∅,
then ker(A) ⊂ ker(B) since the nullity of A is 1. Then since B has nullity 2, it follows that C has

nullity 2 as well.

NOT COMPLETE. NEED TO ADD EXAMPLES. �
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F15.8: Find M−2 where

M =


2 3 2 1

3 6 4 2

4 8 6 3

2 4 3 1

 . (248)

Solution:

We find M−1 be using elementary row operations, and then square M−1 to obtain our result. Note

(M | I) ∼


2 3 2 1 1 0 0 0

3 6 4 2 0 1 0 0

4 8 6 3 0 0 1 0

2 4 3 1 0 0 0 1

 ∼


1 0 0 0 2 −1 0 0

0 1 0 0 −1 2 −1 0

0 0 1 0 0 −2 1 1

0 0 0 1 0 0 1 −2

 , (249)

which implies

M−1 =


2 −1 0 0

−1 2 −1 0

0 −2 1 1

0 0 1 −2

 . (250)

Thus,

M−2 =


5 −4 1 0

−4 7 −3 −1

2 −6 4 −1

0 −2 −1 5

 . (251)

�
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F15.9: Let A be an n× n real matrix such that AT = −A. Prove that det(A) ≥ 0.

Proof:

First observe that det(A) = det(AT ) = det(−A) = (−1)n det(A). If n is odd, then det(A) =

−det(A), which implies det(A) = 0. Now suppose n is even and let x be eigenvector of A with

eigenvalue λ. Then

λ 〈x, x〉 = 〈λx, x〉 = 〈Ax, x〉 = 〈x,−Ax〉 = 〈x,−λx〉 = −λ 〈x, x〉 ,

which implies λ = −λ and so λ must be imaginary. That is, for each λj there is an αj ∈ R such

that λj = iαj where λ1, . . . , λn lists the eigenvalues of A. Since det(A) = λ1 · λ2 · · · · · λn, if λj = 0

for any j = 1, . . . , n, then det(A) = 0 and we are done. So, suppose this is not the case. Then, since

eigenvalues come in conjugate pairs and n is even, det(A) is the product of pairs of eigenvalues λj

and λk with λj = λk such that λjλk = (−1)i2α2
j = α2

j > 0, and so det(A) > 0. This completes the

proof. �
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F15.11: Let T : V → V be a linear operator such that T 6 = 0 and T 5 6= 0. Suppose V ∼= R6. Prove that

there is no linear operator S : V → V such that S2 = T . Does the answer change if V ∼= R12.

Proof:

Let L : V → V be a linear operator. Suppose k is a nonnegative integer and v ∈ null Lk. Then

Lk+1v = L(Lkv) = L(0) = 0 and so v ∈ null Lk+1. Through induction it follows that

{0} = null L0 ⊆ null L1 ⊆ null L2 ⊂ · · · ⊆ null Lk ⊆ null Lk+1 ⊆ · · · .

Now if for some m ∈ N we have null Lm = null Lm+1, then we claim Lm = null Lm+1 =

null Lm+2 = · · · . To show this, we let k ∈ N and verify null Lm+k = null Lm+k+1. We al-

ready know null Lm+k ⊆ null Lm+k+1. So now suppose v ∈ null Lm+k+1. Then Lm+k+1v =

Lm+1(T kv) = 0. This implies Lkv ∈ null Lm+1 = null Lm. Thus, Lm+kv = Lm(Lkv) = 0, which

implies v ∈ null Lm+k and so Lm+k+1 ⊆ null Lm+k, proving Lm+k+1 = null Lm+k.

Let n = dim(V ) = 6. Then we claim null Ln = null Ln+1, which, by the above, implies null Ln =

null Ln+k for each k ∈ N. By way of contradiction, suppose this claim does not hold. Then from

the above, we have

{0} = null L0 ( null L1 ( · · · ( null Ln ( Ln+1.

At each of the strict inclusions in the chain above, the dimension increases by at least one and so

dim(null Tn+1) ≥ n+ 1, which contradicts the fact that n = dim(V ) and null Tn+1 ⊆ V .

Now suppose we have S2 = T . Then, by the above, null S6 = null S6+k for each k ∈ N. However,

this implies null S10 = null S12. But, S12 = T 6 = 0 and so null S12 = V and null S10 = V , which

implies S10 = T 5 = 0, a contradiction. Hence such an S does not exists.

Yes, the answer changes if V ∼= R12. For there we needn’t have S10 = S12 since 10 < dim(V ) and the

above argument does not apply. As an example, suppose e1, . . . , e12 is the standard orthonormal

basis for R12. Then define T (ej) = ej+2 when j + 2 ≤ 12 and T (ej) = 0 when j ≥ 11. Then

defining S(ej) = ej+1 when j ≤ 11 and S(e12) = 0 gives S2 = T . And, T 5 = S10(e1) = e11 6= 0

while T 6 = S12(ei) = 0 for i = 1, . . . , 12. �
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F15.12: Prove that the following n× n matrix M is positive definite:

M =



2 1 1 · · · 1

1 3 1 · · · 1

1 1 4 · · · 1
...

...
...

. . .
...

1 1 1 · · · n+ 1


.

Proof:

We must show 〈Mx, x〉 ≥ 0 for each x ∈ V where V is our n dimensional vector space. Let N be

the n×n matrix of all 1’s and Λ = diag(1, 2, . . . , n). Then M = Λ +N . Now observe that for each

x ∈ V , Nx is equal to the sum of all the entries of x multiplied by the vector of all 1’s, i.e.,

Nx =

 n∑
j=1

xj

 (1, 1, . . . , 1)︸ ︷︷ ︸
n terms

.

Thus,

〈Nx, x〉 =

 n∑
j=1

xj

 〈(1, 1, . . . , 1), x〉 =

 n∑
j=1

xj

 n∑
j=1

xj

=

 n∑
j=1

xj

2

≥ 0.

For the matrix Λ observe that

〈Λx, x〉 =

n∑
j=1

j · xj · xj=
n∑
j=1

j · x2
j ≥ 0.

Hence

〈Mx, x〉 = 〈(N + Λ)x, x〉 = 〈Nx, x〉+ 〈Λx, x〉 =

 n∑
j=1

xj

2

+

n∑
j=1

j · x2
j ≥ 0

and so M is positive definite. �
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2016

S16.1: For a < b real numbers, let f [a, b]× [a, b]→ R be such that

a) for each y ∈ [a, b], x 7→ f(x, y) is non-increasing and continuous on [a, b],

b) for each x ∈ [a, b], y 7→ f(x, y) is non-decreasing and continuous on [a, b].

Prove that g(x) := f(x, x) is continuous on [a, b].

Proof:

To show that g(x) is continuous, it suffices to show that, given ε > 0, at each x0 ∈ [a, b] there exists

δ > 0 such that |g(x)− g(x0)| ≤ ε whenever |x−x0| < δ. Observe from the triangle inequality that

|g(x)− g(x0)| = |f(x, x)− f(x0, x0)|

= |f(x, x)− f(x, x0) + f(x, x0)− f(x0, x0)|

≤ |f(x, x)− f(x, x0)|+ |f(x, x0)− f(x0, x0)|.

(252)

Since the mapping y 7→ f(x, y) is continuous on a compact set [a, b] ⊂ R, it is uniformly continuous.

So, there is a δ1 > 0 such that |f(x, x) − f(x, x0)| ≤ ε/2 whenever |x − x0| < δ1. Similarly, there

exists δ2 > 0 such that |f(x, x0)− f(x0, x0)| ≤ ε/2 whenever |x−x0| < δ2. Define δ := min{δ1, δ2}.
Then, whenever |x− x0| ≤ δ,

|g(x)− g(x0)| ≤ |f(x, x)− f(x, x0)|+ |f(x, x0)− f(x0, x0)| ≤ ε/2 + ε/2 = ε, (253)

and we are done. �
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S16.2: For a < b real numbers and a function f : [a, b]→ R, do as follows:

a) Define what it means for f to be Riemann integrable on [a, b].

b) Let {xn}∞n=1 ⊂ [a, b] be a sequence such that lim
n→∞

xn exists and suppose that f : [a, b]→ R is defined

by

f(x) :=

1 if x /∈ {xn}∞n=1,

0 otherwise.
(254)

Using your definition, prove that f is Riemann integrable on [a, b].

Proof:

a) We define the upper and lower Riemann sums, respectively, of f with respect to a partition

P = {I1, . . . , In} of [a, b] by

U(f ;P ) :=
k∑
i=1

(
sup
Ii

f

)
|Ii| and L(f ;P ) :=

k∑
i=1

(
inf
Ii
f

)
|Ii|. (255)

Let Π denote the collection of all partitions of [a, b]. Then f : [a, b]→ R is Riemann integrable

on [a, b] if it is bounded and

inf
P∈Π

U(f ;P ) = sup
P∈Π

L(f ;P ). (256)

b) We claim that f is Riemann integrable on [a, b]. Clearly, f is bounded by one. We claim every

upper sum equals b−a. Indeed, in each interval Ii of a partition P of [a, b], we can pick z ∈ Ii
such that z /∈ {xn} since Ii is uncountable. Thus, for any partition P = {I1, . . . , Ik} we have

U(f ;P ) =
k∑
i=1

1 · |Ii| = b− a. (257)

Hence infP∈Π U(f ;P ) = b−a. Now let ε > 0 be given. Then to show supP∈Π L(f ;P ) = b−a, it

suffices to construct a partition P of [a, b] such that L(f ;P ) ≥ (b−a)−ε. We do this as follows.

Since the sequence {xn} converges to a limit x and [a, b] is closed, we have x ∈ [a, b]. Moreover,

by the convergence of {xn} we can find an N ∈ Z+ such that, by defining PN := [x− ε/4, x+

ε/4] ∩ [a, b], we have xn ∈ PN for all n ≥ N . Now, inductively define

Pi :=
(
xi −

ε

4 · 2i
, xi +

ε

4 · 2i
)
∩ [a, b]\{PN , . . . , Pi+1} (258)
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for i going from N − 1 to 1. Then infx∈Pi f = 0 for i = 1, . . . , N and

N∑
i=1

|Pi| = |PN |+
N−1∑
i=1

|Pi| =
ε

2
+
ε

4

N−1∑
i=1

1

2i
≤ ε

2
+
ε

4

∞∑
i=0

1

2i
= ε. (259)

Now we can extend {Pi}Ni=1 to a partition P = {P1, . . . , PN ,K1, . . . ,KJ} of [a, b]. This can be

done by defining the Ki to be the intervals in [a, b]\{P1, . . . , PN}. Then

L(f ;P ) =

J∑
i=1

(
inf
x∈Ki

f

)
|Ki| =

J∑
i=1

|Ki| = (b− a)− ε, (260)

as desired. Hence f is Riemann integrable on [a, b].

�
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S16.3: Suppose f : [0, 1]→ R is a continuously differentiable function. Show that the limit

lim
n→∞

n

(
n∑
k=0

f

(
k

n

)
− n

∫ 1

0
f(x) dx

)
(261)

exists and compute its value.

Proof:

We claim the limit actually does not exist, which we will show with a counterexample. Define

f : [0, 1]→ R by f(x) = x for x ∈ [0, 1] and note that f is continuously differentiable. Then

n

(
n∑
k=0

f

(
k

n

)
− n

∫ 1

0
f(x) dx

)
= n

(
n∑
k=0

k

n
− n

2

)

= n

(
1

n
· n(n+ 1)

2
− n

2

)
=
n2 + n

2
− n2

2

=
n

2
.

(262)

Hence

lim
n→∞

n

(
n∑
k=0

f

(
k

n

)
− n

∫ 1

0
f(x) dx

)
= lim

n→∞

n

2
=∞. (263)

�
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S16.4: Given continuous functions α : [0, 1]→ R and β : [0, 1]→ [0, 1), define functions fn : [0, 1]→ R by

the recursion

fn+1(x) = α(x) +

∫ x

0
β(t)fn(t) dt (264)

with f0(x) := 0 for all x ∈ [0, 1]. Prove that, for each x ∈ [0, 1], the limit f(x) := lim
n→∞

fn(x) exists and

compute its value.

Proof:

Consider the metric space C[0, 1] with the sup norm, which we shall denote by X. We proceed by

showing X is complete, and then we define a contraction mapping T : X → X with which we are

able to apply the Banach Fixed Point theorem.

First we show completeness of X. Let {gn} ⊂ X be Cauchy and ε > 0 be given. Then there is a

N ∈ Z+ such that

‖gn − gm‖ ≤ ε/3 ∀ m,n ≥ N. (265)

Let x ∈ [0, 1]. Then the sequence {gn(x)} is Cauchy since |gn(x) − gm(x)| ≤ ‖gn − gm‖ ∀ m,n.

But, since {gn(x)} ⊂ R and R is complete, this sequence converges to some limit. Thus, we may

define a function g : [0, 1]→ R point-wise by g(x) := lim
n→∞

gn(x). Then, taking the limit as n→∞
and using the fact that norms are continuous,

‖g − gm‖ ≤ ε/3 ∀ m ≥ N, (266)

and so gn −→ g. Now we verify g is continuous. Let x ∈ [0, 1]. Since gN is continuous, there is a

δ > 0 such that for y ∈ [0, 1],

|x− y| < δ ⇒ |gN (x)− gN (y)| ≤ ε/3. (267)

Thus, whenever y ∈ [0, 1] and |x− y| ≤ δ,

|g(x)− g(y)| ≤ |g(x)− gN (x) + gN (x)− gN (y) + gN (y)− g(y)|

≤ |g(x)− gN (x)|+ |gN (x)− gN (y)|+ |gN (y)− g(y)|

≤ ε

3
+
ε

3
+
ε

3

= ε.

(268)

Thus, g ∈ X and so X is complete.
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Now define the mapping T : X → X by

T (f)(x) = α(x) +

∫ x

0
β(t)fn(t) dt. (269)

Because [0, 1] is closed and bounded, the extreme value theorem implies β attains its maximum

value β∗ on [0, 1]. Since β([0, 1]) ⊂ [0, 1), we see β∗ < 1. Then, for f, g ∈ X, observe we discover

‖T (f)− T (g)‖ =

∥∥∥∥∫ x

0
β(t)[f(t)− g(t)] dt

∥∥∥∥
≤ β∗

∥∥∥∥∫ x

0
f(t)− g(t) dt

∥∥∥∥
≤ β∗‖f − g‖

∣∣∣∣∫ x

0
dt

∣∣∣∣
≤ β∗‖f − g‖

< ‖f − g‖.

(270)

Thus, T is a contraction. And because X is complete, the Banach Fixed Point theorem implies

that for any f0 ∈ X, the sequence fn+1 := T (fn) converges to a fixed point of T . Thence the limit

f(x) := lim
n→∞

fn(x) exists and satisfies

f(x) = T (f)(x) = α(x) +

∫ x

0
β(t)f(t) dt. (271)

All that remains is to compute f . We proceed in this by assuming α is differentiable, but this is

not a necessary assumption our final answer. Differentiating, we see

f ′(x) = α′(x) + β(x)f(x) ⇒ f ′(x)− β(x)f(x) = α′(x). (272)

Including an integrating factor, we obtain

d

[
f(x) exp

(
−
∫
x
β

)]
= α′(x) exp

(
−
∫
x
β

)
dx (273)

which implies

f(x) = α(x) + exp

(∫
x
β

)
·
∫
x
αβ exp

(
−
∫
t
β

)
dt (274)

where the equality follows by integrating each side (the right hand side by parts) and then multi-

plying by exp
(∫
x β
)
. �
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S16.5: Let f, g ∈ R2 → R be continuously differentiable functions such that g attains value zero at at least

one point. Suppose that ∇g 6= 0 everywhere on R2 and assume (x0, y0) is a point such that

f(x0, y0) = inf {f(x, y) : x, y ∈ R, g(x, y) = 0} . (275)

Show there is λ ∈ R such that ∇f(x0, y0) = λ∇g(x0, y0).

Proof:

We proceed by identifying λ ∈ R such that the desired relation holds. Since ∇g(x0, y0) 6= 0, we

may take gy(x0, y0) 6= 0, without loss of generality. Then the Implicit Function Theorem implies

there is a neighborhood N ⊂ R containing x and continuously differentiable φ : N → R such that

y0 = φ(x0) and g(x, φ(x)) = 0 for x ∈ N . (276)

With this, define τ : N → R by τ(x) = f(x, φ(x)). Since x0 is an extremal point of τ , by hypothesis,

and N is an open neighborhood, we discover

0 = τ ′(x0) = fx(x0, φ(x0)) + fy(x0, φ(x0))φ′(x0). (277)

But, we also know 0 = g(x0, y0) = g(x0, φ(x0)) and so

0 = gx(x0, y0) + gy(x0, y0)φ′(x0) ⇒ φ′(x0) = −gx(x0, y0)

gy(x0, y0)
(278)

where the division is well-defined since gy(x0, y0) 6= 0. Plugging (278) into (277), we see

fx(x0, y0) =
gx(x0, y0)fy(x0, y0)

gy(x0, y0)
. (279)

Take λ := fy(x0, y0)/gy(x0, y0) so that fy(x0, y0) = λgy(x0, y0). With this choice of λ, (279)

becomes fx(x0, y0) = λgx(x0, y0). Thus, we have identified λ yielding ∇f(x0, y0) = λ∇g(x0, y0).

This completes the proof.2 �

2For a proof in a more general context, see pp. 465-466 of Fitzpatrick [1].
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S16.6: A metric ρ in a metric space (X, ρ) is said to be an ultrametric if

∀ x, y, z ∈ X, ρ(x, y) ≤ max{ρ(x, z), ρ(y, z)}. (280)

Prove that, in this metric, every open ball {y : ρ(x, y) < r} is closed and every closed ball {y : ρ(x, y) ≤ r}
is open.

Proof:

Let B0
x be the open ball of radius r centered at x and Bx be the corresponding closed ball. Also

suppose y ∈ (B0
x)c. We claim B0

y ⊂ (B0
x)c, from which it follows that (B0

x)c is open and, equivalently,

that B0
x is closed. To see this, suppose, by way of contradiction, there is z ∈ B0

y ∩B0
x. Then

ρ(x, y) ≤ max{ρ(x, z), ρ(y, z)} < r. (281)

But, we have ρ(x, y) ≥ r since y ∈ (B0
x)c, a contradiction. Thus, B0

y ⊂ (B0
x)c.

We now show Bx is open. Let y ∈ Bx. We claim B0
y ⊂ Bx. Indeed, let z ∈ B0

y . Then

ρ(z, x) ≤ max{ρ(y, z), ρ(z, y)} ≤ r, (282)

and so z ∈ Bx. Hence Bx is open. �
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S16.7: An orthogonal n × n matrix A is called elementary if the corresponding linear transformation

LA : Rn → Rn fixes an (n− 2)-dimensional subspace. Prove that every orthogonal matrix M is a product

of at most (n− 1) elementary orthogonal matrices.

Proof:

By way of contradiction, suppose there is an orthogonal n× n matrix M that is the product of n

elementary orthogonal matrices..... �
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S16.8: Let A = (aij) be a 2× 2 real matrix such that

a2
11 + a2

12 + a2
21 + a2

22 <
1

10
. (283)

Prove that (I +A) is invertible.

Proof:

To prove (I +A) is invertible, it suffices to show that det(I +A) 6= 0. So, observe that

det(I +A) =

∣∣∣∣∣ 1 + a11 a12

a21 1 + a22

∣∣∣∣∣
= (1 + a11)(1 + a22)− a12a21

= 1 + a11 + a22 + a11a22 − a12a21

≥ 1− |a11| − |a22| − |a11||a22| − |a12||a21|

≥ 1− 1√
10
− 1√

10
− 1

10
− 1

10

=
8− 2

√
10

10

> 0,

(284)

where we have used the triangle inequality and the fact that 8 − 2
√

10 > 0 since 82 = 64 > 40 =

(2
√

10)2. Thus, det(I +A) 6= 0. �
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S16.9: Let v1 = (0, 1, x), v2 = (1, x, 1), v3 = (x, 1, 0). Find all x ∈ R for which {v1, v2, v3} are linearly

independent over R. Similarly, find all x ∈ R for which {v1, v2, v3} are linearly independent over Q.

Proof:

Let A = [v3 v2 v1]. Then

detA =

∣∣∣∣∣∣∣
x 1 0

1 x 1

0 1 x

∣∣∣∣∣∣∣ = x

∣∣∣∣∣ x 1

1 x

∣∣∣∣∣− 1

∣∣∣∣∣ 1 0

1 x

∣∣∣∣∣= x(x2 − 1)− 1(x− 0) = x(x2 − 2). (285)

We know that the columns of A are independent over R if det(A) 6= 0. Hence the set of all points

for which these columns are linearly independent over R is given by

{x ∈ R | x 6= 0 ∧ x 6= ±
√

2}. (286)

Showing linear independence over Q is slightly more involved. Of course, since 0 ∈ Q, by (285) we

know x 6= 0. All that remains is to check for when x ∈ {−
√

2,
√

2}. We claim such choice of x yields

that {v1, v2, v3} are linearly independent over Q. To see this, we proceed by way of contradiction.

So, suppose x ∈ {−
√

2,
√

2} and {v1, v2, v3} is a linearly dependent set over Q. Then there exists

scalars α1, α2, α3 ∈ Q not all zero such that

α1v1 + α2v2 + α3v3 = 0. (287)

Since none of the vi is a scalar multiple of another vj with i 6= j, each αi is nonzero. We can write

v3 =
α2

α3
v2 +

α1

α3
v1. (288)

This implies

±
√

2 =
α2

α3
· 1 +

α1

α3
· 0 =

α2

α3
. (289)

But α2/α3 ∈ Q while ±
√

2 /∈ Q, which gives our desired contradiction. �
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S16.10: Let S be a subset of Mat(3,C), the set of 3× 3 matrices over C. The set S is called dense if every

matrix in Mat(3,C) is a limit of a sequence of matrices in S.

a) Prove that the set of matrices with distinct eigenvalues is dense in Mat(3,C).

b) Prove that the sequence of matrices with one Jordan block is not dense in Mat(3,C).

Proof:

a) We prove the theorem for the general case of Mat(n,C), from which the result for n = 3

follows. Let A ∈ Mat(n,C) and ε > 0. We shall find a sequence {Ak}∞k=1 with limit A. We

do this using the norm defined by ‖A‖ := maxi,j=1,...,n{|Aij |}. We must find N ∈ N such that

‖Ak −A‖ < ε ∀ k ≥ N. (290)

Let J be the Jordan canonical form of A so that there is an invertible matrix P with

A = PJP−1. Then the eigenvalues λ1, . . . , λn of A are along the diagonal of J .

We now construct n sequences {δkj }∞k=1 such that, for fixed k, each λj + δkj is distinct and with

the property that δkj −→ 0 as k −→ ∞. First let δk1 := 1/k. Then, inductively, define the

sequence {δkj } by δkj := 1/(mjkk) where mjk is defined to be the smallest integer in {1, 2, . . . , j}
such that λj + δkj 6= λi + δki for i = 1, . . . , j − 1. Now define the matrix Λk ∈ Mat(n,C) by

Λk := diag(δk1 , . . . , δ
k
n). We claim Ak := P (J + Λk)P−1 converges to A. Observe that

‖Ak −A‖ = ‖PJP−1 − P (J + Λk)P−1‖ = ‖PΛkP−1‖ ≤ ‖P‖‖Λk‖‖P−1‖. (291)

By construction of Λk and each δkj , we have ‖Λk‖ ≤ 1/k. And, the Archimedean property of

R implies there is N ∈ Z+ such that 1/N ≤ ε/‖P‖‖P−1‖. Thence

‖Ak −A‖ ≤ 1

k
· ‖P‖‖P−1‖ ≤ ε ∀ k ≥ N, (292)

as desired.

(continued on next page)
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b) Consider the matrix A := diag(1, 2, . . . , n) ∈ Mat(n,C). This is a diagonal matrix with

eigenvalues 1,2,. . . , n. By way of contradiction, suppose {Ak} ⊂ Mat(n,C) and Ak −→ A as

k −→ ∞, and Ak has one Jordan block Jkλ with eigenvalue λk. By hypothesis, Jkλ converges,

and so it must converge point-wise, which implies there is a λ such that λk −→ λ∗. And,

∀ k ∈ Z+, lim
k→∞

det(Ak − λI) = lim
k→∞

det(PJkλP
−1 − λI)

= lim
k→∞

det(Jkλ − λI)

= lim
k→∞

(λk − λ)n

= (λ∗ − λ)n.

(293)

And, since the determinant is a polynomial of its entries, it is continuous and

lim
k→∞

det(Ak − λI) = det

(
lim
k→∞

Ak − λI
)

= det(A− λI) =
n∏
i=1

(i− λ). (294)

But, this implies
n∏
i=1

(i− λ) = (λ∗ − λ)n, (295)

a contradiction.

�
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S16.12: Let A be a symmetric n × n real matrix, n ≥ 4, and let v1, . . . , v4 ∈ Rn be nonzero vectors.

Suppose Avk = (2k − 1)vk for k = 1, . . . , 4. Prove that v1 + 2v2 is orthogonal to 3v3 + 4v4.

Proof:

We must show 〈v1 + 2v2, 3v3 + 4v4〉 = 0. Using the linearity of the scalar product in Rn, we see

〈v1 + 2v2, 3v3 + 4v4〉 = 〈v1, 3v3〉+ 〈v1, 4v4〉+ 〈2v2, 3v3〉+ 〈2v2, 4v4〉

= 3 〈v1, v3〉+ 4 〈v1, v4〉+ 6 〈v2, v3〉+ 8 〈v2, v4〉 .
(296)

Using the fact that A is symmetric, we see

〈v1, v3〉 = 〈Av1, v3〉 = 〈v1, Av3〉 = 〈v1, 5v3〉 = 5 〈v1, v3〉 , (297)

which implies 〈v1, v3〉 = 0. Also,

〈v2, v3〉 =
1

3
〈Av2, v3〉 =

1

3
〈v2, Av3〉 =

1

3
〈v2, 5v3〉 =

5

3
〈v2, v3〉 , (298)

and so 〈v2, v3〉 = 0. In similar fashion, we find 〈v1, v4〉 = 0 and 〈v2, v4〉 = 0. Thus,

〈v1 + 2v2, 3v3 + 4v4〉 = 3 · 0 + 4 · 0 + 6 · 0 + 8 · 0 = 0, (299)

as desired. �
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F16.10: Find the unique point (x, y) ∈ R2 on the curve x4 + y4 = 2 that is closest to the line y = x− 100.

Note: Formal calculations alone do not constitute a solution. you must justify rigorously that there is a

point that is closest, that it is unique, and that it is the specific point you claim it is.

Proof:

We claim the point (1,−1) is closest to the line L = {(x, y) ∈ R2 : y = x− 100}. Let Lx̄,ȳ be the

line containing (x̄, ȳ) that is orthogonal to the line L. Then the distance between (x̄, ȳ) and the

line L is given by the distance between (x̄, ȳ) and the point in the intersection of L and Lx̄,ȳ. Since

the line Lx̄,ȳ is orthogonal to y = x− 100, it has slope −1. Using the point-slope formula, we find

Lx̄,ȳ = {(x, y) : y − ȳ = −(x− x̄)}. (300)

The point (x, y) in the intersection of Lx̄,ȳ and y = x− 100 gives

−(x− x̄) + ȳ = y = x− 100 ⇒ x =
x̄+ ȳ

2
+ 50 ⇒ y =

x̄+ ȳ

2
− 50. (301)

The Euclidean distance between (x̄, ȳ) is, therefore,√(
x̄−

[
x̄+ ȳ

2
+ 50

])2

+

(
ȳ −

[
x̄+ ȳ

2
− 50

])2

=

√[
x̄− ȳ

2
− 50

]2

+

[
ȳ − x̄

2
+ 50

]2

=
√

2

∣∣∣∣ x̄− ȳ2
+ 50

∣∣∣∣ .
(302)

Define a function f : R2 → R by

f(x, y) = 2

(
x− y

2
+ 50

)2

(303)

so that f gives the square of the distance from a point (x, y) to L. Since x2 is strictly convex, our

problem may be stated as

min
x∈R2

f(x) such that g(x) = 0 (304)

where g(x) = x4 + y4 − 2 is the constraint function. Note the set of points for which g(x) = 0 is

nonempty since g(1,−1) = 14 + 14− 2 = 1 + 1− 2 = 0. And, f is nonnegative (identically zero in L

and positive elsewhere) and continuous. So, the problem does admit a solution. Now, Lagrange’s

theorem states that if f and g continuous differentiable and that an extremum (a, b) of f subject

to the constraint g = 0 we have ∇g(a, b) 6= (0, 0), there is λ ∈ R such that

∇f(a, b) = λ∇g(a, b). (305)
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Indeed,

∇f(x, y) = 2

(
x− y

2
+ 50

)
(1,−1) and ∇g(x, y) = (4x3, 4y3), (306)

each of which have continuous partial derivatives. And, ∇g(x, y) = 0 iff (x, y) = (0, 0), which is not

possible for g(x, y) = 0. And, because f is strictly convex, any extremum is a unique minimizer.

Thence

2(b− a, a− b) = ∇f(a, b) = λ∇g(a, b) = 4λ(a3, b3). (307)

This implies

4λa3 = 2(b− a) = −2(a− b) = −(4λb3). (308)

If λ = 0, then ∇f(a, b) = 0. However, f attains its global minimum (zero) along points in L. And,

by the constraint g(a, b) = 0, we know (a, b) /∈ L. So, we take λ 6= 0 to obtain a3 = −b3, from

which we deduce a = −b. Then

0 = g(a, b) = a4 + b4 − 2 = a4 + a4 − 2 ⇒ a4 = 1 ⇒ a = 1. (309)

Thence we conclude (1,−1) is the unique point in R2 on the curve g = 0 that is closest to L. �
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4.2 Other Good Problems

Let A = (aij) be a 2× 2 real matrix such that

a2
11 + a2

12 + a2
21 + a2

22 <
1

10
. (310)

Prove that (I −A) is invertible.

Proof:

Recall that (I − A) is invertible iff det(I − A) 6= 0. And, det(I − A) = 0 iff 1 is an eigenvalue of

A for some unit vector v. In such a case, ‖A‖ ≥ ‖Av‖ = ‖1v‖ = ‖v‖ ≥ 1. So, it suffices to show

‖A‖ < 1. Let us denote a11 = a, a21 = c, a21 = b, and a22 = c. Then for (x, y) with x2 + y2 = 1 we

have ∥∥∥∥∥
(
a c

b d

)(
x

y

)∥∥∥∥∥
2

=

∥∥∥∥∥
(
ax+ cy

bx+ dy

)∥∥∥∥∥
2

= 〈(a, c), (x, y)〉2 + 〈(b, d), (x, y)〉2

≤ ‖(a, c)‖2���
��:1

‖(x, y)‖2 + ‖(b, d)‖2����:
1

‖x, y‖2

= (a2 + c2) + (b2 + d2)

< 1/10.

Thus, ‖A‖ ≤ 1/
√

10 < 1 and we are done. �

a) Show that for any n×m matrix A, the dimension of the span of the rows is equal to the dimension of

the span of the columns.

b) Show that the dimensions in a) equal the size of the largest submatrix of A that is square with nonzero

determinant.

Proof:

a) Let T : Rm → Rn be the linear map associated with A and v ∈ kerT . Then for each

w ∈ V 〈Tv,w〉 = 〈0, w〉 = 0. But, by definition of the adjoint T ∗ of T , 〈Tv,w〉 = 〈v, T ∗w〉
and so 〈v, T ∗w〉 = 0 for all w. This is logically equivalent to saying v ∈ (im T ∗)⊥. Hence

ker T = (im T ∗)⊥. But, dim((im T ∗)⊥) = dim(Rn) − dim(im T ∗). Thence dim(im T ∗) =

dim(Rn)− dim(ker T ). This implies

dim(row A) = dim(col At) = dim(im T ∗) = dim(Rn)− dim(ker T ) = dim(im T ) = dim(col A).

b) We can row reduce A such that the first k = dim(col A) columns are nonzero with the rest

of the columns zero, i.e., we can row reduce A to obtain A ∼ B = (v1 v2 · · · vk 0 · · · 0) for
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column vectors v1, . . . , vk where the vi are linearly independent and form a basis for col B.

Note that this is the largest number of linearly independent column vectors we can have.

Then, using the result of a), the submatrix B′ = (v1 · · · vk) must have k linearly independent

rows so that B′ can be row reduced to obtain a m×k matrix (v′1 · · · v′k) where the each entry

in vi from k + 1 to n is zero. Then the submatrix k × k submatrix (v′1 · · · v′k) has linearly

independent columns and rows. Note well that, by construction, this matrix is similar to the

largest k × k submatrix of A with linearly independent columns. Since the columns of this

submatrix are independent, it is invertible. And, since this is similar to a k × k submatrix in

A, that matrix is also invertible and hence has determinant zero. Since a matrix is invertible

iff it has linearly independent columns, this is the largest size of invertible submatrix of A.

�
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Suppose T ∈ L(V ) is self-adjoint, λ ∈ F , and ε > 0. Suppose also there is v ∈ V such that ‖v‖ = 1 and

‖Tv − λv‖ < ε. Prove T has an eigenvalue λ′ such that |λ− λ′| < ε.3

Proof:

Since T is self-adjoint, the spectral theorem implies V has an orthonormal basis of eigenvectors

e1, . . . , en of T with eigenvalues λ1, . . . , λn. So, there are unique scalars a1, . . . , an ∈ F such that

v = a1e1 + · · ·+ anvn and 1 = ‖v‖2 = |a1|2 + · · ·+ |an|2. Then note

Tv − λv = (T − λI)

n∑
i=1

aiei =

n∑
i=1

ai(λi − λ)ei, (311)

If T has no eigenvalue λ′ with |λ− λ′| < ε, then, using the fact that the ei are orthonormal,

‖Tv − λv‖2 =

n∑
i=1

|ai|2|λi − λ|2 ≥
n∑
i=1

|ai|2ε2 = ε2 ⇒ ‖Tv − λv‖ ≥ ε, (312)

which contradicts our hypothesis. Hence T must have an eigenvalue λ′ such that |λ− λ′| < ε. �

3This comes from Axler Problem 12 page 224.
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