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MATH 146 Discussion Notes Heaton

Introduction

These notes are provided to compliment the TA discussion sessions on Thursdays for MATH 146.

Typically, more detail is provided here than on the board during discussions since portions of solu-

tions are given orally in class. The examples provided here are meant to be a constructive reference

for students. These illustrate how to use set up the variational problems we will see this quarter,

what details are important to include, and provide example of acceptable solution presentation.

Before reading each solution, I highly encourage students to first seriously attempt the problems

on their own. I cannot overstate the value of struggling through these problems before comparing

your attempts to the example solutions.

These notes will be updated weekly (if not more often), reflecting the current discussion material.
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Review Material

The next definition follows that that of the analysis text often called Baby Rudin [1, Definition 5.1].

Definition: Define f : [a, b]→ R. For any x ∈ [a, b], define the quotient

φ(t) :=
f(t)− f(x)

t− x
(a < t < b, t 6= x), (1)

and define

f ′(x) := lim
t→x

φ(t), (2)

provided the limit exists. We associate the function f ′ with f at the points where the limit (2) exists.

The function f ′ is called the derivative of f . If f ′ is defined at a point x, we say f is differentiable

at x. And if f ′ is defined at every point in a set I ⊂ [a, b], then we say f is differentiable on I. 4

Example 1: Use the above definition to compute f ′(1) for the function f(x) = x2.

Solution:

Through direct computation, we find

f ′(1) = lim
t→1

f(t)− f(1)

t− 1

= lim
h→0

f(1 + h)− f(1)

(1 + h)− 1

= lim
h→0

(1 + h)2 − 1

h

= lim
h→0

1 + 2h+ h2 − 1

h

= lim
h→0

2h+ h2

h

= lim
h→0

2 + h

= 2 + 0

= 2.

(3)

�
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Taylor’s Theorem: Let I ⊂ R be a neighborhood of x0 and n be a nonnegative integer. Suppose

the function f : I → R has n + 1 derivatives. Then for each point x 6= x0 in I there is a point ξ

strictly between x and x0 such that

f(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1. (4)

4

Remark 1: The second term in (4) is known as the Lagrange Remainder. �

Consider using Taylor’s theorem when n = 1. That is, suppose f is twice differentiable at x and

define

ε(h) :=
f (2)(ξ(h))

2
h2 (5)

where ξ(h) is the point strictly between x and x+ h such that

f(x+ h) = f(x) + f ′(x)h+ ε(h), (6)

which we know exists by Taylor’s theorem. This form of expansion will be useful for us to remember

when we look at differentiation of more abstract quantities known as functionals. Furthermore, this

shows

f ′(x) = lim
h→0

f ′(x) = lim
h→0

(
f(x+ h)− f(x)− ε(h)

h

)
= lim

h→0

(
f(x+ h)− f(x)

h
− ε(h)

h

)
= f ′(x)− lim

h→0

ε(h)

h
.

(7)

Thus lim
h→0

ε(h)/h = 0. Using little-oh notation (defined below), we write this as ε(h) = o(h).

Definition: Assume g(x) is nonzero. Then we say f(x) = o(g(x)) as x −−→ x∗ provided

lim
x→x∗

∣∣∣∣f(x)

g(x)

∣∣∣∣ = 0. (8)

This notation is referred to as little-oh notation. 4
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Example 2: Define f(x) := x2. Express f(x+ h) explicitly in the form of (6).

Solution:

First observe f ′(x) = 2x and f ′′(x) = 2. Then we see

f(x+ h) = (x+ h)2 = x2 + 2xh+ h2 = f(x) + f ′(x)h+ ε(h) (9)

where ε(h) := h2. �

We now turn our attention to a necessary condition for a point x to be a local minimizer of f .

Theorem: If f : R → R is a continuously differentiable function and x is a local minimizer of f ,

then f ′(x) = 0. 4
Proof:

Let x be a minimizer of f , i.e., there is a δ∗ > 0 such that f(x) ≤ f(x) for all x ∈
(x− δ∗, x+ δ∗). We proceed by way of contradiction, i.e., suppose f ′(x) 6= 0. By hypothesis

f ′ is continuous, and so there is a δ > 0 such that

|z − x| < δ =⇒ |f ′(z)− f ′(x)| < |f
′(x)|
2

. (10)

But, using the reverse triangle inequality, we see

|f ′(x)| − |f ′(z)| ≤ |f ′(z)− f ′(x)| < |f
′(x)|
2

=⇒ |f ′(x)|
2

< |f ′(z)|. (11)

Suppose f ′(x) > 0 and pick z ∈ (x − δ/2, x). Taylor’s theorem asserts there is ξ ∈ (z, x)

such that

f(z) = f(x) + f ′(ξ)(z − x)= f(x)− f ′(ξ)|z − x| < f(x)− |f
′(x)|
2
|z − x|< f(x). (12)

This shows f(z) < f(x) for all z ∈ (x − δ/2, x). Thus x cannot be a local minimizer of f ,

contradicting our initial assumption. Whence f ′(x) ≤ 0. By analogous argument to above,

if instead f ′(x) < 0, we pick z ∈ (x, x+ δ/2) to deduce

f(z) = f(x) + f ′(ξ)(z − x)= f(x) + f ′(ξ)|z − x| < f(x)− |f
′(x)|
2
|z − x|< f(x), (13)

again giving a contradiction. This shows f ′(x) ≥ 0. Therefore, combining our results, we

conclude f ′(x) = 0, as desired. �
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Remark 2: The above theorem shows that a necessary condition for x to be a local minimizer of

f is that f ′(x) = 0. Below we provide several examples illustrating the use and limitations of this

theorem. �

Example 3: Define f(x) = (x− 3)2 + 5x+ 3. Solve the optimization problem

min
x∈R

f(x), (14)

using only the above theorem and definition of a minimizer.

Solution:

First note f is continuously differentiable since it is a polynomial. And,

f ′(x) = 2(x− 3) + 5 + 0 = 2x− 1. (15)

The single critical point of f is at x = 1/2. The above theorem shows this is the only

candidate solution to the optimization problem.

All that remains is to verify x = 1/2 is, in fact, a minimizer. We can rewrite f as f(x) =

x2 − x+ 12. Pick any z ∈ R and set δ := z − 1/2 so that z = 1/2 + δ. Then

f(z) = f

(
1

2
+ δ

)
=

(
1

2
+ δ

)2

−
(

1

2
+ δ

)
+ 12

=

(
1

4
+ δ + δ2

)
−
(

1

2
+ δ

)
+ 12

=

(
1

4
− 1

2
+ 12

)
+ δ2

= f

(
1

2

)
+ δ2

≥ f

(
1

2

)
.

(16)

This shows f(1/2) ≤ f(z) for all z ∈ R, i.e., 1/2 is the global minimizer of f , and we are

done. �
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Example 4: Define f(x) = x3. Can the above theorem be applied to find a local minimum?

Solution:

Observe f ′(x) = 3x2 and so f ′(x) = 0 if and only if x = 0. But, f(0) = 0 > −ε3 = f(−ε) for

every ε > 0 and so 0 is not a local minimum of f . Thus the above theorem cannot be applied

to find a local minimum. Moreover, because this was the only candidate for a minimizer, we

are able to further conclude f has no global minimizer over R. �

Remark 3: The above theorem shows that the condition f ′(x) = 0 is necessary, but not sufficient.

We illustrate this again with the following example. �

Example 5: Define f(x) = −x2. Can the above theorem be applied to find a local minimum?

Solution:

Observe f ′(x) = −2x and so f ′(x) = 0 if and only if x = 0. But, f(z) = −z2 < 0 = f(0)

for all z 6= 0. This shows 0 is not a local minimum of f . Thus the above theorem cannot be

applied to find a local minimum. In fact, the above shows x = 0 is a global maximizer of f .

�

Example 6: Define f(x) := 3|x − 5|. What is the global minimizer of f and can the above

theorem be applied? Explain.

Solution:

The global minimizer is x = 5. Indeed,

f(5) = 0 ≤ 3|x− 5| = f(x) ∀ x ∈ R. (17)

However, f is not continuously differentiable since f ′ is not continuous at x = 5. Indeed,

lim
x→5−

f ′(x) = −3 6= 3 = lim
x→5+

f ′(x). (18)

Thus a condition for the theorem does not hold and so it cannot be applied. �
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Remark 4: Here we review integration by parts. Let f, g ∈ C1[a, b]. Then using the product rule

we write
d

dx
[f(x)g(x)] = f ′(x)g(x) + f(x)g′(x). (19)

So, ∫ b

a

d

dx
[f(x)g(x)] dx =

∫ b

a

f ′(x)g(x) + f(x)g′(x) dx. (20)

But, the left hand side can be rewritten as∫ b

a

d

dx
[f(x)g(x)] dx =

∫ f(b)g(b)

f(a)g(a)

d (fg) = [f(x)g(x)]x=b
x=a = f(b)g(b)− f(a)g(a). (21)

Thus the integration by parts formula becomes∫ b

a

f(x)g′(x) dx = −
∫ b

a

f ′(x)g′(x) dx+ [f(x)g(x)]x=b
x=a . (22)

This will be especially useful tool for us and is important to have at our disposal. �
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Simple Methods for Finding Minimizers of J : V → R

Remark 5: For the following problems, we proceed roughly by taking the following steps.

1. Find a lower bound ` for J(y) (the tightest lower bound we can establish).

2. Find a collection of candidates y for which J(y) equals this lower bound, i.e., J(y) = `.

3. Any functions in the collection of candidates contained in A are minimizers. If at least one

candidate is contained in A, then ` is the minimum.

This approach works when the minimizer is obtained. However, what can we do when it isn’t

obtained? In this case, we might attempt to do as follows.

1. Find a lower bound ` for J(y) (the tightest lower bound we can establish).

2. Find a collection of candidates y for which J(y) equals this lower bound.

3. If none of the candidates y is admissible (i.e, y /∈ A), we must find a sequence {yn}∞n=1 of

functions in A for which

lim
n→∞

J(yn) = `. (23)

Then ` is the infimum and it is not obtained.

�
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Definition: Let V be a vector space and J : V → R be a mapping. Let A be a subset of V , i.e.,

A ⊂ V . Then we say y ∈ A is a global minimizer of J over A provided

J(y) ≤ J(z) ∀ z ∈ A. (24)

4

Example 7: Define the admissibility class A := C[0, 2] and let J : C[0, 2]→ R be the functional

defined by

J(y) :=

∫ 2

0

[y(x)− 9]2 + 7 dx. (25)

Find the minimum of J over A. What is the minimizer?

Solution:

Let y ∈ A. Then

J(y) =

∫ 2

0

[y(x)− 9]2 + 7 dx ≥
∫ 2

0

0 + 7 dx = 14, (26)

where the inequality holds since [y(x)−9]2 ≥ 0 for all possible values of y(x). This shows 14

is a lower bound for J(y). To verify this is the minimum for J(y), it suffices to find f ∈ A
such that J(f) = 14. This is accomplished if and only if the inequality in (26) is a strict

equality. The only candidate is f(x) = 9 since this would give

[f(x)− 9]2 = [9− 9]2 = 02 = 0. (27)

Indeed, this implies

J(y) ≥ 14 = J(f) ∀ y ∈ A. (28)

Because f is constant, it is continuous on [a, b], and so f ∈ A. Thus we conclude f(x) = 9

is the minimizer of J(y) over A and 14 is the minimum of J(y) over A. �
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Example 8: Define the admissibility class A := {f ∈ C[a, b] : f(x) ≥ 5} and let J : C[a, b]→ R
be the functional defined by

J(y) :=

∫ b

a

y(x)2 − 8y(x) + 20 dx. (29)

Find the minimum of J over A. What is the minimizer?

Solution:

Let y ∈ A. Then

J(y) =

∫ b

a

y(x)2 − 8y(x) + 20 dx

=

∫ b

a

(
y(x)2 − 8y(x) + 16

)
+ 4 dx

=

∫ b

a

(y(x)− 4)2 + 4 dx

≥
∫ b

a

(5− 4)2 + 4 dx

=

∫ b

a

5 dx

= 5(b− a).

(30)

This shows 5(b − a) is a lower bound for J(y). To verify this is the minimum for J(y), it

suffices to find f ∈ A such that J(f) = 5(b − a). This is accomplished if and only if the

inequality in (30) is a strict equality. The only candidate is f(x) = 5. Since f is continuous

on [a, b] and f ≥ 5, we see f ∈ A. Thus we conclude f(x) = 5 is the minimizer of J(y) over

A and 5(b− a) is the minimum of J(y) over A. �

Remark 6: Note in the above example we say f(x) = 5 is “the” minimizer. This is because the is

the only function in A that gives J(f) = 5(b− a). In the next example, multiple minimizers exist.

�

Remark 7: Note A does not form a vector space in the following example. This follows from the

fact it is not closed under scalar multiplication. For example, if f ∈ A, then −f /∈ A. �
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Example 9: Define the admissibility class A := {f ∈ C[0, 1] : f(x) ≥ x2 − 10x + 28}. Then let

J : C[0, 1]→ R be the functional defined by

J(f) := inf
x∈[0,1]

f(x). (31)

Find inf
f∈A

J(f). Does J(f) attains its infimum?

Solution:

Let f ∈ A. Then, for each x ∈ [0, 1],

f(x) ≥ x2 − 10x+ 28 = (x2 − 10x+ 25) + 3 = (x− 5)2 + 3. (32)

Set g(x) := (x − 5)2 + 3. Also note g′(x) = 2(x − 5) < 0 for x < 5, and so g is strictly

decreasing on [0, 1]. This implies inf
x∈[0,1]

g(x) = g(1). Using this fact, we see

J(f) = inf
x∈[0,1]

f(x) ≥ inf
x∈[0,1]

g(x) = g(1) = (1− 5)2 + 3 = 19. (33)

This shows J(f) ≥ 19, i.e., 19 is a lower bound. Moreover, because g is a polynomial, it is

continuous. Whence g ∈ A and

J(f) ≥ J(g) = 19 ∀ f ∈ A. (34)

Thus g is a minimizer of J over A and so inf
f∈A

J(f) = 19. Yes, J(f) attains its infimum. �

Remark 8: Note in the above example we say g is “a” minimizer. In general, there may be multiple

minimizers. For instance, in the above example consider defining q(x) := g(x) + (x − 1)2. Then

q ∈ C[0, 1] and q(x) = g(x) + (x− 1)2 ≥ g(x), which implies q ∈ A. Moreover,

q′(x) = g′(x) + 2(x− 1) = 2(x− 5) + 2(x− 1) ≤ 2(x− 5) + 0 < 0 ∀ x ∈ [0, 1]. (35)

This shows q is strictly decreasing on [0, 1]. Thus

J(q) = inf
x∈[0,1]

q(x) = q(1) = g(1) + (1− 1)2 = g(1) = 19. (36)

This shows g and q are minimizers of J over A. �
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Example 10: Define the function h : R→ R by

h(x) :=

0 if |x| < 1,

1 if |x| ≥ 1.
(37)

Define the admissibility class A := {f ∈ C1(R) : f(x) ≥ h(x)}. Then let J : C1(R) → R be the

functional

J(y) :=

∫ 1

−1

y(x) dx. (38)

Compute inf
y∈A

J(y). Does J attain its infimum?

Solution:

We proceed as follows. First we find a lower bound for J over A. Then we show this is the

greatest lower bound for J over A. Lastly, we remark why J dose not attain its infimum,

i.e., there is no minimizer in A. Note, for y ∈ A,

J(y) =

∫ 1

−1

y(x) dx ≥
∫ 1

−1

h(x) dx =

∫ 1

−1

0 dx = 0. (39)

This shows 0 is a lower bound for J(y). We claim there is a sequence of functions {fn}∞n=1

contained in A such that J(fn) −−→ 0. This implies there is no lower bound greater than

zero and, therefore, 0 must be the greatest lower bound for J . In other words, 0 = inf
y∈A

J(y).

All that remains is to verify the claimed sequence {fn}∞n=1 exists. Define fn(x) := x2n for

n ≥ 1. Then fn(x) = x2n ≥ 0 = h(x) for |x| < 1 and fn(x) = x2n ≥ 12n = 1 = h(x) for

|x| ≥ 1. Hence fn ≥ h and, with the fact f is a polynomial (and thus smooth), we see fn ∈ A
for each n. Then computing J(fn) gives

J(fn) =

∫ 1

−1

fn(x) dx =

∫ 1

−1

x2n dx = 2

∫ 1

0

x2n dx = 2

(
12n+1

2n+ 1

)
=

2

2n+ 1
≤ 1

n
(40)

Taking the limit as n −−→∞, we see

0 ≤ lim
n→∞

J(fn) ≤ lim
n→∞

1

n
= 0. (41)

Thus lim
n→∞

J(fn) = 0, as desired.
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Lastly, we note J does not attain its infimum. This is because the infimum is obtained if

and only if y(x) = 0 for |x| < 1. But, because we need y(±1) ≥ 1, such a minimizer would

necessarily have a jump discontinuity, contradicting the fact y(x) must be continuous to be

in A. �

Remark 9: After reading the above example, we may ask ourselves “But why did you pick

fn(x) = x2n? How did you know to do that?”. I encourage the reader to draw a picture. A

good picture can go a long way.

We want a continuous function f with f(−1) ≥ 1 and f(1) ≥ 1, but approaches 0 for |x| < 1.

To keep things simple, we may restrict our consideration to even functions. Perhaps an initial

guess might be to use x2 to get an even function with (−1)2 = 1 = 12. Then because |x| < 1, we

know |x|n −−→ 0 as n −−→ ∞ (see Lemma below). So, we could try (x2)n = x2n. Indeed, we see

graphically below this does do the trick.

−1 −0.5 0.5 1

0.2

0.4

0.6

0.8

1
x2

x6

x20

Figure 1: Plots of x2n on [−1, 1] for n = 1, 3, 10. �

Lemma: Let c ∈ (0, 1). The lim
n→∞

cn = 0. 4
Proof:

Let n ∈ N. Then cn+1 = ccn < 1cn = cn. This shows the sequence {cn}∞n=1 is decreasing.

And, the fact cn ≥ 0n = 0 shows it is bounded from below. The Monotone Convergence

Theorem then asserts {cn}∞n=1 converges to some limit α ∈ R. Observe

α = lim
n→∞

cn = lim
n→∞

cn+1 = c lim
n→∞

cn = cα. (42)

Because c ∈ (0, 1), the above can hold if and only if α = 0. Thus lim
n→∞

cn = 0. �
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Min-Max Problems

In this section, we discuss how a constrained minimization problem can be turned into an equivalent

min-max problem. To illustrate this, we will first work with an example of a minimization problem

in R, and then we will take the ideas from there and apply them to finding minimizers in a space

of functions (e.g., C2[a, b]).

Example 11: Suppose f : R → R is defined by f(x) := 5(x − 7)2 and g : R → R is defined by

g(x) := x3. Express the constrained minimization problem

min
x∈R

f(x) s.t. g(x) = 8 (43)

as an unconstrained min-max problem.

Solution:

Observe our optimization problem can be rewritten as

min
x∈R

f(x) s.t. g(x) = 8, (44)

which is equivalent to

min
x∈R

 5(x− 7)2 if (x3 − 8) = 0,

∞ otherwise.
(45)

We can then express this problem as

min
x∈R

max
λ∈R

5(x− 7)2 + λ(x3 − 8). (46)

�
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Remark 10: The step to rewrite the constrained problem as (45) initially seems as though we are

moving backwards; however, this makes the following form in (46) more clear. Indeed, if (x3− 8) is

not zero, then we can pick λ to make this as big as we’d like. For example, if x3 − 8 = α > 0, then

we may heuristically write

lim
λ→∞

5(x− 7)2 + λ(x3 − 8) = lim
λ→∞

5(x− 7)2 + λα

= 5(x− 7)2 + lim
λ→∞

λα

= 5(x− 7)2 +∞

=∞.

(47)

We could do similarly taking λ → −∞ if x3 − 8 < 0. This same idea will next be used for a

constrained optimization problem using a functional. �

Remark 11: Suppose we wish to find the minimizer of J over a set X. Here we will consider the

problem unconstrained when X is a vector space without any constraints other than those imposed

on the smoothness. So, if

X :=

{
y ∈ C2[a, b] :

∫ b

a

y dx = 0

}
, (48)

and we are given a functional J : C2[a, b]→ R, then the problem

min
y∈X

J(y) (49)

is here considered a constrained problem. However,

min
y∈C2[a,b]

J(y) (50)

is here considered unconstrained. �
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Example 12: Let f : R → R be continuous, i.e., f ∈ C(R). Also assume q : [0, 1] → R is

continuous and define J : C[0, 2]→ R by

J(y) :=

∫ 2

0

f(y(x)) dx (51)

and set

X :=
{
y ∈ C2[0, 2] : y′′(x) = q(x) ∀ x ∈ [0, 1]

}
. (52)

Rewrite the constrained optimization problem

min
y∈X

J(y) = min
y∈C2[0,2]

J(y) s.t. y′′(x) = q(x) ∀ x ∈ [0, 1] (53)

as an unconstrained min-max problem.

Solution:

Observe

min
y∈X

J(y) = min
y∈C2[0,2]

 J(y) if y′′(x)− q(x) = 0 for all x ∈ [0, 1],

∞ otherwise.
(54)

To ensure the constrained y′′(x) − q(x) = 0 holds for all x ∈ [0, 1], we need a function

λ(x) ∈ C[0, 1]. Indeed, then (54) becomes

min
y∈C2[0,2]

max
λ∈C[0,1]

J(y) +

∫ 1

0

λ(x) [y′′(x)− q(x)] dx. (55)

Alternatively, we could write this problem as

min
y∈C2[0,2]

max
λ∈R

J(y) + λ

∫ 1

0

[y′′(x)− q(x)]
2

dx. (56)

�
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Remark 12: Why do we need λ to be a function in (55) rather than simply a number in R? The

answer is this. If we merely impose that λ ∈ R, then

0 =

∫ 1

0

λy′′(x)− q(x) dx = λ

∫ 1

0

y′′(x)− q(x) dx, (57)

which holds whenever the average of y′′− q on [0, 1] is zero. For example, if y′′(x)− q(x) = x− 1/2,

then for each λ we have

λ

∫ 1

0

y′′(x)− q(x) dx = λ

∫ 1

0

x− 1/2 dx = λ

[
x2

2
− x

2

]1

0

= λ0 = 0. (58)

But, x−1/2 is not identically zero for all x ∈ [0, 1]. This is why we must use a function λ(x) in (55).

A simpler route, which does allow for λ to be a scalar is given in (56). For there the integral term

with y′′ and q is equal to zero if and only if y′′(x) = q(x) for all x ∈ [0, 1]. �

Remark 13: In the next example, we impose two constraints on a minimization problem. �

Example 13: For a functional J : C[0, 1]→ R, rewrite the constrained minimization problem

min
y∈C1[0,1]

J(y) s.t.

∫ 1

0

y2 dx = 5,

∫ 1

0

y′ dx = 0. (59)

as an unconstrained problem.

Solution:

Here the optimization problem may be rewritten as

min
y∈C1[0,1]

max
λ∈R

J(y) + λ

[∫ 1

0

y2 dx− 5

]
s.t.

∫ 1

0

y′ dx = 0. (60)

We now have a min-max problem, but there is still a constraint involved. So, we add another

parameter µ to obtain the unconstrained problem

min
y∈C1[0,1]

max
λ∈R

max
µ∈R

J(y) + λ

[∫ 1

0

y2 dx− 5

]
+ µ

∫ 1

0

y′ dx. (61)

�
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Example 14: Consider the optimization problem

min
y∈C1[0,1]

∫ 1

0

(y′ − 2)2 dx s.t.

∫ 1

0

y dx = 2. (62)

a) Rewrite the constrained problem as an unconstrained min-max problem.

b) Solve the constrained minimization problem. What is the minimizer? What is the minimum?

Solution:

a) We can rewrite the constrained problem as

min
y∈C1[0,1]


∫ 1

0
(y′ − 2)2 dx if (

∫ 1

0
y dx− 2) = 0,

∞ otherwise,
(63)

which in turn can be expressed as

min
y∈C1[0,1]

max
λ∈R

∫ 1

0

(y′ − 2)2 dx+ λ

[∫ 1

0

y dx− 2

]
, (64)

and then simplified as

min
y∈C1[0,1]

max
λ∈R

∫ 1

0

(y′ − 2)2 + λ(y − 2) dx. (65)

b) First note 0 is a lower bound for our functional since

∀ y ∈ C1[0, 1],

∫ 1

0

(y′ − 2)2 dx ≥
∫ 1

0

0 dx = 0. (66)

We claim 0 is the minimum and verify this as follows. Suppose y ∈ C1[0, 1]. Then the

inequality in (66) is an equality if and only if y′(x) = 2 for all x in [0, 1], which implies

y(x) = 2x+ c for some c ∈ R. In order for y to satisfy the constraint, we need

2 =

∫ 1

0

y dx =

∫ 1

0

2x+ c dx =
[
x2 + cx

]1
0

= 1 + c ⇔ c = 1. (67)

This shows the inequality in (66) holds if and only if y(x) = 2x + 1. All that remains

is to note y is smooth since it is a polynomial, and so y ∈ C1[0, 1]. Thus we conclude

the minimizer is y(x) = 2x+ 1 and the minimum is 0.

�
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The Gâteaux Derivative & Extremals

In this section, we effectively discuss how to take “derivatives” of functionals. First we provide

the definition of a Gâteaux derivative. Then we discuss admissibility classes, provide a couple ex-

amples of these, outline a path for computing Gâteaux derivatives, and then provide more examples.

Definition: Suppose V is a vector space. The Gâteaux derivative, denoted J(y, v), of J : V → R
at y ∈ V in the direction of v is defined as a mapping δJ(y, v) from V into R such that

δJ(y, v) := lim
ε→0

J(y + εh)− J(y)

ε
=

d

dε
[J(y + εh)]ε=0 , (68)

provided the limit exists. If the limit exists for all h ∈ V , then we say J is Gâteaux differentiable

at y. 4

Definition: Let A be a subset of a vector space V , written A ⊆ V . When solving a variational

problem, the set of feasible solutions (i.e., those satisfying the constraints) are defined by the

admissibility class A. 4

Remark 14: Sometimes in this course the admissibility class is expressed by X rather than A. �

Definition: Suppose y ∈ A. We call a function v an admissible variation provided there is an

interval (−ε, ε) such that y + εv ∈ A. 4

Example 15: Let A = C([0, 1]). Then for each y, v ∈ A and ε ∈ R we have y + εv ∈ A
since the sum of continuous functions is continuous and scalar multiples of continuous functions are

continuous.
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Example 16: Find the set of all admissible variations when A = {y ∈ C([0, 1]) : y(0) = 1}.
Solution:

Let y ∈ A and ε ∈ R. Also let h ∈ C([0, 1]). Since the the sum of continuous functions

is continuous and scalar multiples of continuous functions are continuous, y + εh is always

continuous. All that remains is to identify a condition on h so that y(0)+εh(0) = 0. Observe

this implies

0 = y(0) + εh(0) = 0 + εh(0) =⇒ h(0) = 0, (69)

since we may take ε 6= 0. Thus the set of admissible variations is given by

{v ∈ C([0, 1]) : v(0) = 0}. (70)

�

Remark 15: Computing the Gâteaux derivative:

1. Identify J and A.

2. Fix y ∈ A. Let v ∈ V such that y + εv ∈ A for all ε with |ε| sufficiently small.1

3. Compute
d

dε
[J(y + εv)] and then evaluate the result at ε = 0.

�

Theorem: Suppose y is a local minimizer of a functional J : V → R over an open set contained in

A. Then δJ(y, v) = 0 for every admissible variation v. 4

Remark 16: We can state the result of the above theorem more intuitively, using knowledge

from calculus and earlier theorem. Fix v to be any admissible variation. Then define the function

f : R→ R by f(ε) := J(y + εv). Since y is a minimizer for J , it follows that 0 is a local minimizer

of f . Therefore f ′(0) = 0. In other words,

0 = f ′(0) =
d

dε
[J(y + εh)]ε=0 = lim

ε→0

J(y + εh)− J(y)

ε
= δJ(y, v). (71)

�
1Note the choice of A may impose restrictions on v.
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Lagrange’s Lemma: Suppose f ∈ C[a, b]. If for all v ∈ C[a, b] we have

0 =

∫ b

a

f(x)v(x) dx, (72)

then f(x) = 0 for all x ∈ [a, b], i.e., f is identically zero. 4

Remark 17: The above lemma will be of significant importance to use when trying to determine

what differential equation a minimizer y of a functional J must satisfy. �

Definition: We say that y is an extremal of J provided δJ(y, v) = 0 for arbitrary v. 4

Remark 18: From the above definition and our theorem giving a necessary condition for mini-

mizers, we know every minimizer is an extremal. However, an extremal need not necessarily be a

minimizer (e.g., it could be a maximizer as is the case in Example 24). �

Remark 19: Below we list steps for finding extremals of J : V → R over A, assuming A is no-

nempty.

Finding Extremals:

1. Let y ∈ A and find conditions on v ∈ V such that y + εv ∈ A when |ε| is sufficiently small.

2. Compute δJ(y, v) =
d

dε
[J(y + εv)]ε=0 and simplify using information known from A.

3. Set δJ(y, v) = 0 and use our lemma to obtain an equation for each solution y to this equation.

4. Find the solutions to this equation to obtain each possible extremal y ∈ A.

If, in addition, we would like to verify an extremal y0 is a local minimizer of J over A, then we

must show there is ε > 0 such that J(y0) ≤ J(y) for all y ∈ A satisfying ‖y − y0‖ < ε for some

appropriate norm ‖ · ‖. If J(y0) ≤ J(y) for all y ∈ A, then it is a global minimizer. Note every

global minimizer is also a local minimizer. �
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Example 17: Define J : C1([0, 1])→ R by

J(y) :=
1

2

∫ 1

0

(y′)2 + y2 + 2yex dx. (73)

Let v ∈ C1([0, 1]) and compute δJ(y, v).

Solution:

Through direction computation we find

δJ(y, v) =
d

dε
[J(y + εv)]ε=0

=
d

dε

[
1

2

∫ 1

0

(y′ + εv′)2 + (y + εv)2 + 2(y + εv)ex dx

]
ε=0

=

[∫ 1

0

(y′ + εv′)v′ + (y + εv)v + 2vex dx

]
ε=0

=

∫ 1

0

y′v′ + yv + 2vex dx.

(74)

�
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Example 18: Define J : C1([0, 2])→ R by

J(y) :=

∫ 2

0

yy′ + cos(y)dx. (75)

Let v ∈ C1([0, 2]) with v(0) = v(2) = 0. Compute δJ(y, v) and simplify as much as possible.

Solution:

Through direction computation we find

δJ(y, v) =
d

dε
[J(y + εv)]ε=0

=
d

dε

[∫ 2

0

(y + εv)(y′ + εv′) + cos(y + εv) dx

]
ε=0

=

[∫ 2

0

v(y′ + εv′) + (y + εv)v′ − sin(y + εv)v dx

]
ε=0

=

∫ 2

0

vy′ + yv′ − sin(y)v dx

=

∫ 2

0

(y′ − y′ − sin(y)) v dx+
�
�
�>

0
[yv]20

= −
∫ 2

0

sin(y)v dx.

(76)

�
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Example 19: Define J : C1([0, 1])→ R by

J(y) :=

∫ 1

0

√
1 + (y′)2dx. (77)

Let v ∈ C1([0, 1]) and compute δJ(y, v).

Solution:

Through direction computation we find

δJ(y, v) =
d

dε
[J(y + εv)]ε=0

=
d

dε

[∫ 1

0

√
1 + (y′ + εv′)2 dx

]
ε=0

=

[∫ 1

0

1

2

(
1 + (y′ + εv′)2

)−1/2 · 2(y′ + εv′) · v′ dx

]
ε=0

=

[∫ 1

0

(y′ + εv′)v′√
1 + (y′ + εv′)2

dx

]
ε=0

=

∫ 1

0

y′v′√
1 + (y′)2

dx.

(78)

�
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Example 20: Define J : C1([1, 2])→ R by

J(y) :=

∫ 2

1

3x2(y′)2 − ey dx (79)

Let v ∈ C1([1, 2]) and compute δJ(y, v).

Solution:

Through direct computation we find

δJ(y, v) =
d

dε
[J(y + εv)]ε=0

=
d

dε

[∫ 2

1

3x2(y′ + εv′)2 − ey+εv dx

]
ε=0

=

[∫ 2

1

6x2(y′ + εv′)v′ − vey+εv dx

]
ε=0

=

∫ 2

1

6x2y′v′ − vey dx.

(80)

�

Remark 20: With some practice of taking Gâteaux derivatives, we next move toward using these

to find minimizers of a few functionals. �
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Example 21: Define the admissibility class A := C[a, b]. Then let J : A → R be the functional

J(y) =

∫ b

a

(y(x)− 4)2 dx. (81)

Find a minimizer of J over A using the Gâteaux derivative. You may suppose a minimizer y0 ∈ A
exists.

Solution:

Fix y, v ∈ A. Then y+ εv ∈ A for all ε ∈ R since A is a vector space. We expand J(y+ εh)

to find

J(y + εv) =

∫ b

a

[y(x) + εv(x)− 4]2 dx

=

∫ b

a

[y(x) + εv(x)]2 − 8 [y(x) + εv(x)] + 16 dx

=

∫ b

a

y(x)2 + 2εy(x)v(x) + ε2v(x)2 − 8 [y(x) + εv(x)] + 16 dx

=

∫ b

a

y(x)2 − 8y(x) + 16 dx+ 2ε

∫ b

a

[y(x)− 4] v(x) dx+ ε2

∫ b

a

v(x)2 dx

= J(y) + +2ε

∫ b

a

[y(x)− 4] v(x) dx+ ε2

∫ b

a

v(x)2 dx.

(82)

Thus

δJ(y, v) = lim
ε→0

J(y + εv)− J(y)

ε

= lim
ε→0

(
2

∫ b

a

[y(x)− 4] v(x) dx+ ε

∫ b

a

v(x)2 dx

)
= 2

∫ b

a

[y(x)− 4] v(x) dx.

(83)

By our theorem, we know that if y is a minimizer of J over A, then

0 = δJ(y, v) = 2

∫ b

a

[y(x)− 4] v(x) dx (84)

for all admissible variations v. This implies the only candidate minimizer is y(x) = 4. Since

J(y) ≥ 0 for all y ∈ A and J(y) = 0, we conclude y(x) = 4 is the global minimizer of J

over A. �
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Remark 21: The above computations may seem quite tedious. This is because they are. A more

elegant approach for computing δJ(y, v) is given in the following reworking of the above example,

utilizing our knowledge of derivatives for real valued functions. �

Example 22: Repeat the previous example, making use of derivatives of real-valued functions.

Solution:

Fix y, v ∈ A. Then y + εv ∈ A for all ε ∈ R since A is a vector space. Through direct

computation we find

d

dε
J(y + εv) =

d

dε

∫ b

a

[y(x) + εv(x)− 4]2 dx=

∫ b

a

2 [y(x) + εv(x)− 4] v(x) dx. (85)

Thus

δJ(y, v) =
d

dε
[J(y + εv)]ε=0 =

∫ b

a

2 [y(x)− 4] v(x) dx. (86)

If y is a minimizer of J , then it is an extremal of J , and so δJ(y, v) = 0. Since this result

holds for arbitrary admissible variations v, our lemma states the only candidate minimizer

is y(x) = 4. Since J(y) ≥ 0 for all y ∈ A and J(y) = 0, we conclude y(x) = 4 is the global

minimizer of J over A. �
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Example 23: Define the functional J : C2[0, 1]→ R by

J(y) :=

∫ 1

0

1

2
mẏ2 −mgy dt, (87)

here using the dot notation for time derivatives. Let A := {y ∈ C2[0, 1] : y(0) = α1, y(1) = α2}.
Find an extremal y0 ∈ A of J .

Solution:

Pick y ∈ A. Since the end points of y ∈ A are fixed, if h ∈ V and y0 + εh ∈ A for any

nonzero ε, then

α1 = y(0) + εh(0) = α1 + εh(0) =⇒ h(0) = 0. (88)

Similarly, h(1) = 0. Fixing h, we compute

d

dε
[J(y + εh)] =

d

dε

∫ 1

0

1

2
m(ẏ + εḣ)2 −mg(ẏ + εḣ) dt =

∫ 1

0

m
(
ẏ + εḣ

)
ḣ−mgh dt. (89)

To make this more useful, we use integration by parts with the first to rewrite the above in

a more useful form. That is,

d

dε
[J(y + εh)] =

∫ 1

0

−m(ÿ + εḧ)h−mgh dt = −m
∫ 1

0

(
ÿ + εḧ+ g

)
h dt. (90)

Evaluating the above at ε = 0, we deduce

δJ(y, h) = −m
∫ 1

0

(ÿ + g)h dt. (91)

Thus for a minimizer y0 of J we see δJ(y, h) = 0. Since this holds for an arbitrary admissible

variation h, by our lemma we deduce the only candidate minimizer satisfies ÿ0 = −g. Then

ẏ0 = −gt+ c1 =⇒ y0 = −1

2
gt2 + c1t+ c2 (92)

for some c1, c2 ∈ R. Using the fact y0(0) = α1, we know c2 = α1. Then

α2 = y0(1) = −1

2
g + c1 + α1 =⇒ c1 = α2 − α1 +

g

2
, (93)
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and we conclude

y0(t) = −1

2
gt2 +

(
α2 − α1 +

g

2

)
t+ α1. (94)

�

Remark 22: From classical mechanics in physics, we know the kinetic energy of a ball of mass m

is given by T = 1
2
mẏ2 and its potential energy is U = mgh. In the above, we are minimizing T −U

over a time interval. It turns out this is associated with Hamilton’s Principle and it gives the same

result as would be obtained using Newton’s second law of motion. �

Example 24: Define J : C[0, 1]→ R by

J(y) =

∫ 1

0

−y(x)2 + 6y(x) + 10 dx. (95)

Find y0 ∈ C[0, 1] such that δJ(y, v) = 0 for all C[0, 1]. Is y0 a minimizer of J over C[0, 1]?

Solution:

Let y, h ∈ A and ε ∈ R. Differentiating, we see

d

dε
J(y + εv) =

d

dε

∫ 1

0

− [y + εv]2 + 6[y + εv] + 10 dx =

∫ 1

0

−2 [y + εv] v + 6h dx. (96)

This implies

δJ(y, v) =

∫ 1

0

−2yv + 6v dx =

∫ 1

0

(−2y + 6) v dx. (97)

So, taking y0(x) = 3, we obtain δJ(y0, v) = 0. Now observe

J(y) =

∫ 1

0

−
(
y2 − 6y + 9

)
+ 19 dx =

∫ 1

0

− (y − 3)2 + 19 dx ≤
∫ 1

0

19 dx = 19. (98)

This shows 19 is an upper bound for J(y). However,

J(y0) =

∫ 1

0

− (3− 3)2 + 19 dx = 19. (99)

Moreover, if y 6= 3 = y0, then J(y) < J(y0). Thus y0 is not a minimizer of J . In fact, this

shows y0 is a maximizer of J . �
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Remark 23: The above example shows the condition δJ(y0, v) = 0 is not a sufficient condition to

conclude y0 is a minimizer of J . �
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Example 25: Now consider a bounded subset Ω ⊂ Rn. Let f : Ω → R be continuous and

y ∈ C3(Ω). Then define J : C3(Ω)→ R by

J(y) =
1

2

∫
Ω

(f − y)2 + λ(∆y)2 dx. (100)

Compute the Gâteaux derivative of δJ(y, v), assuming all boundary terms vanish.

Solution:

Observe

δJ(y, v) =
d

dε

[
1

2

∫
Ω

(f − y − εv)2 + λ(∆y + ε∆v)2 dx

]
ε=0

=

[∫
Ω

−(f − y − εv)v + λ(∆y + ε∆v)∆v dx

]
ε=0

=

∫
Ω

−(f − y)v + λ∆y∆v dx

=

∫
Ω

−(f − y)v + λ

(
n∑
i=1

yxixi

)(
n∑
j=1

vxjxj

)
dx

=

∫
Ω

−(f − y)v + λ
n∑

i,j=1

yxixivxjxj dx

=

∫
Ω

−(f − y)v − λ
n∑

i,j=1

∂xjyxixivxj dx

=

∫
Ω

−(f − y)v + λ
n∑

i,j=1

∂xjxjyxixiv dx

=

∫
Ω

−(f − y)v + λ

n∑
j=1

∂xjxj

(
n∑
i=1

yxixi

)
v dx

=

∫
Ω

−(f − y)v + λ
n∑
j=1

∂xjxj∆yv dx

=

∫
Ω

(−(f − y) + λ∆∆y) v dx.

(101)

Then if y is an extremal, Lagrange’s Lemma asserts y satisfies

− (f − y) + λ∆∆y = 0 in Ω. (102)

�
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Euler-Lagrange Equations

Suppose we have a function L(ẏ, y, x) and J : C2[a, b]→ R given by

J(y) :=

∫ b

a

L(ẏ, y, x) dx. (103)

Then for each v ∈ C2[a, b]

δJ(y, v) =
d

dε

[∫ b

a

L(ẏ + εv̇, y + εv, x)

]
ε=0

=

[∫ b

a

Lẏ(ẏ + εv̇, y + εv, x)v̇ + Ly(ẏ + εv̇, y + εv, x)v dx

]
ε=0

=

∫ b

a

Lẏ(ẏ, y, x)v̇ + Ly(ẏ, y, x)v dx.

(104)

For notational compactness, we henceforth suppress the arguments of L(ẏ, y, x) and simply write

L. Integrating by parts yields

δJ(y, v) =

∫ b

a

Lẏv̇ + Lyv dx

=

∫ b

a

− d

dx
[Lẏ] v + Lyv dx+ [Lẏv]ba

=

∫ b

a

(
Ly −

d

dx
[Lẏ]

)
v dx+ [Lẏv]ba .

(105)

If y is an extremal of J , then δJ(y, v) = 0 for each v ∈ C2[a, b]. Consequently, the integral term

must equal zero. Applying Lagrange’s Lemma yields

0 = Ly −
d

dx
[Lẏ] for x ∈ [a, b]. (106)

We call this equation the Euler-Lagrange equation. Furthermore, for an extremal y the boundary

terms must vanish, i.e., we need

0 = Lẏv|x=a and 0 = Lẏv|x=b . (107)

These are known as natural boundary conditions. If y(a) is fixed, then v(a) = 0 and so the first

natural boundary condition holds automatically. Similarly applies if y(b) is fixed. However, if the
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endpoint y(a) is not fixed and so the admissible variation v can take on any value at a, then we see

0 = Lẏ|x=a . (108)

Similarly applies for y(b). For more reading, we encourage the reader to see the set of notes.

(Unfortunately, it is not clear who created these notes.)

Remark 24: Now that we have more powerful tools available, we can almost immediately identify

the differential equation satisfied by extremals to functionals of the form in (103). The steps here

are roughly:

1. Identify the Lagrangian.

2. Write the Euler-Lagrange equation.

3. Identify the appropriate boundary conditions.

4. Solve the differential equation with the boundary conditions to obtain the extremals.

�
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Example 26: Find the form of extremals of J : C2[0, 1]→ R defined by

J(y) :=
1

2

∫ 1

0

y2 + ẏ2 + 2yex dx. (109)

Solution:

Here the Lagrangian is L = 1
2
(y2 + ẏ2) + yex. Using the Euler-Lagrange equation, we know

any extremal y satisfies

0 = Ly −
d

dx
Lẏ = (y + ex)− d

dx
[ẏ] = y + ex − ÿ ∀ x ∈ [0, 1]. (110)

Since this is a linear ODE, we may write y = yH + yP where yH − ÿH = 0 and yP − ÿP = ex.

The general solution to the homogeneous equation is

yH = c1e
x + c2e

−x (111)

for some scalars c1, c2 ∈ R. The particular solution is yP = −x
2
ex. Thus the extremal is of

the form

y =
(
c1 −

x

2

)
ex + c2e

−x. (112)

�

Remark 25: Using the natural boundary condition Lẏ = 0 at x = 0 and x = 1, we would obtain

two boundary conditions, which could be used to explicitly solve for c1 and c2. �

Remark 26: The solution to the above problem was much simpler than that obtained using the

method of previous examples where we computed the Gâteaux derivative. �
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Example 27: Find the extremal of J : C2[0, 1]→ R given by

J(y) =
1

2

∫ π

0

y2 − ẏ2 dx (113)

subject to the condition y(0) = 3¿

Solution:

Here the Lagrangian is L = 1
2
(y2− ẏ2). Then any extremal y of J satisfies the Euler-Lagrange

equation

0 = Ly −
d

dx
Lẏ = y − d

dx
[−ẏ] = y + ÿ. (114)

Furthermore, since y is not fixed at x = π, we have the natural boundary condition

0 = Lẏ|x=π = −ẏ(π). (115)

The general solution to the ODE y + ÿ = 0 is y = c1 sin(x) + c2 cos(x) for scalars c1, c2 ∈ R.

Then the natural boundary condition implies

0 = c1 cos(π)− c2 sin(π) = −c1 − 0 =⇒ c1 = 0. (116)

Thus y = c2 cos(x) and the condition on y(0) yields

3 = y(0) = c2 cos(0) = c2 =⇒ y = 3 cos(x). (117)

�
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Example 28: Find the extremal of J over A := {y ∈ C2[0, 1] : y(0) = 2} where

J(y) :=
1

2

∫ 1

0

y2 + ẏ2 dx. (118)

Solution:

Let y ∈ A. Then if v ∈ C2[0, 1] is an admissible variation, we need v(0) = 0. Also, here the

Lagrangian is L = 1
2

(y2 + ẏ2). Then any extremal y satisfies the Euler-Lagrange equation

0 = Ly −
d

dx
Lẏ = y − d

dx
[ẏ] = y − ÿ ∀ x ∈ [0, 1]. (119)

The general solution to this ODE is y = c1e
x + c2e

−x for scalars c1, c2 ∈ R. Since v can take

on any value at x = 1, we have the natural boundary condition

0 = Lẏ|x=1 = y′(1) =
[
c1e

x − c2e
−x]

x=1
= c1e− c2e

−1 =⇒ c1 =
c2

e2
. (120)

Then the initial condition yields

2 = y(0) = c1e
0 + c2e

−0 = c1 + c2 = c2

(
1

e2
+ 1

)
=⇒ c2 =

2

1 + 1/e2
=

2e2

1 + e2
. (121)

Back substitution then reveals c1 = 2/(1 + e2). Combining our results, we conclude

y =
2

1 + e2

(
ex + e2−x) . (122)

�
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Example 29: Find the form of extremals of

J(y) =

∫ b

a

x2ẏ2 + y2 dx. (123)

Solution:

Here the Lagrangian is L = x2ẏ2 + y2. Then the Euler-Lagrange equation reveals any

extremal y satisfies

0 = Ly−
d

dx
Lẏ = 2y− d

dx

[
2x2ẏ

]
= 2y−4xẏ−2x2ÿ = 2

(
y − 2xẏ − x2ÿ

)
∀ x ∈ [a, b]. (124)

Thus

x2ÿ + 2xẏ − y = 0 ∀ x ∈ [a, b]. (125)

This is a second order Cauchy-Euler equation, which has solutions of the form

y = c1x
(
√

5−1)/2 + c2x
−(
√

5+1)/2, (126)

for scalars c1, c2 ∈ R. �
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Example 30: Find the form of extremals of J over all y ∈ A = {y ∈ C2[0, 1] : y(0) = 0, y(π) =

2π} where

J(y) =
1

2

∫ π

0

9y2 − ẏ2 − 36xy dx. (127)

Solution:

Here the Lagrangian is L =
1

2
(9y2 − ẏ2 − 36xy) . Then any extremal y of J satisfies the

Euler-Lagrange equation

0 = Ly −
d

dx
Lẏ = (9y − 36x)− d

d
[−ẏ] = 9y − 36x+ ÿ ∀ x ∈ [a, b]. (128)

Thus y is a solution of the ODE ÿ + 9y = 18x. Since this ODE is linear, we may write

y = yH + yP where yH is the solution to the associated homogeneous problem and yP is a

particular solution. The general solution to the homogeneous equation is

yH = c1 cos(3x) + c2 sin(3x) (129)

for some scalars c1, c2 ∈ R. Note yP = 2x by inspection. Then the first boundary condition

implies

0 = y(0) = [c1 cos(3x) + c2 sin(3x) + 2x]x=0 = c1 + 0 + 0 =⇒ c1 = 0. (130)

Thus y = c2 sin(3x) + 2x. The second boundary condition implies

2π = y(π) = 0 + 2π, (131)

which provides no new information. Consequently, the form of each extremal is

y = c2 sin(3x) + 2x. (132)

�
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Remark 27: Finding the extremals of functionals is quite useful for identifying the motion of

objects in classical mechanics. Hamilton’s Principle states that if we let L = T − U where T is

the kinetic energy of a system and U is its potential energy, then the extremal of J as defined in

(103) gives the motion of the system over a given period of time, swapping time t for the variable

x. �

(MORE PHYSICS EXAMPLES WILL BE ADDED SOON.)
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Constrained Problems

Suppose we seek to solve

min
y

∫ b

a

L(ẏ, y, x) dx s.t.

∫ b

a

G(ẏ, y, x) dx = 0. (133)

Here we define the augmented Lagrangian L∗ = L+λG for some scalar λ ∈ G. Then the extremals

satisfy the Euler-Lagrange equation

0 = L∗y −
d

dx
L∗ẏ ∀ x ∈ [a, b]. (134)

An alternative approach to using the augmented Lagrangian L∗ is to rewrite the problem as a min-

max problem. Then we swap the order of the min and max, find a solution to the min problem,

and then use the constraint to identify the variable λ. This is illustrated in the following example.
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Example 31: Find the local extrema over C[0, 1] of2

J(y) =

∫ 1

0

xy dx subject to

∫ 1

0

y2 dx =
1

3
. (135)

Solution:

The constrained problem may be rewritten as the min-max problem

min
y

max
λ

∫ 1

0

xy + λy2 − λ

12
dx = max

λ
min
y

∫ 1

0

xy + λy2 − λ

12
dx, (136)

where λ is a real scalar. Note for each y, v ∈ C[0, 1] and ε ∈ R we have y + εv ∈ C[0, 1].

Then taking the Gâteaux derivative for such y and v yields

δJ(y, v) =
d

dε
[J(y + εv)]ε=0

=
d

dε

[∫ 1

0

x(y + εv) + λ(y + εv)2 − λ

12
dx

]
ε=0

=

[∫ 1

0

vx+ 2λ(y + εv)v − 0 dx

]
ε=0

=

∫ 1

0

(x+ 2λy) v dx.

(137)

Consequently, if y is an extrema, then applying Lagrange’s Lemma with the fact 0 = δJ(y, v)

yields

0 = x+ 2λy =⇒ y = − x

2λ
. (138)

Then plugging this into our constraint yields

1

3
=

∫ 1

0

y2 dx =

∫ 1

0

(
− x

2λ

)
dx = − 1

4λ2

∫ 1

0

x2 dx = − 1

12λ2
. (139)

This shows 3 = 12λ2, from which we deduce λ = ±1/2. Whence this fact together with

(140) shows the potential local extrema are given by y = ±x. �

2This problem is modeled after an exercise in [2].
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Example 32: Here we present an alternative solution to the previous problem.

Solution:

First we identify the augmented Lagrangian L∗ = xy + λy2. Then we use the fact any local

extrema satisfies the Euler-Lagrange equation to write

0 = L∗y −
d

dx

[
L∗y′
]

= (x+ 2λy)− d

dx
[0] = x+ 2λy =⇒ y = − x

2λ
. (140)

Then plugging this into our constraint yields

1

3
=

∫ 1

0

y2 dx =

∫ 1

0

(
− x

2λ

)
dx = − 1

4λ2

∫ 1

0

x2 dx = − 1

12λ2
. (141)

This shows 3 = 12λ2, from which we deduce λ = ±1/2. Whence this fact together with

(140) shows the potential local extrema are given by y = ±x. �

42 Last Modified: 3/12/2018



MATH 146 Discussion Notes Heaton

Example 33: Find the local minimizer of3

J(y) =

∫ 1

0

y dx (142)

subject to the constraint ∫ 1

0

y2 + xy dx =
47

12
. (143)

You may assume the local minimizer is one of the extremals.

Solution:

First we rewrite the problem as

min
y

max
λ

∫ 1

0

y + λy2 + λxy dx− 47

12
λ = max

λ
min
y

∫ 1

0

y + λy2 + λxy dx− 47

12
λ. (144)

where λ is a real scalar. Note for each y, v ∈ C[0, 1] and ε ∈ R we have y + εv ∈ C[0, 1].

Then taking the Gâteaux derivative for such y and v yields

δJ(y, v) =
d

dε
[J(y + εv)]ε=0

=
d

dε

[∫ 1

0

(y + εv) + λ(y + εv)2 + λx(y + εv) dx− 47

12
λ

]
ε=0

=

[∫ 1

0

v + 2λ(y + εv)v + λxv dx− 47

12
λ

]
ε=0

=

∫ 1

0

(1 + 2λy + λx) v dx.

(145)

Consequently, if y is an extrema, then applying Lagrange’s Lemma with the fact 0 = δJ(y, v)

yields

0 = 1 + 2λy + λx =⇒ y = −1

2

[
x+

1

λ

]
. (146)

3This example is due to [2].
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Then plugging this into our constraint yields

47

12
=

∫ 1

0

y2 + xy dx =

∫ 1

0

(
−1

2

[
x+

1

λ

])2

+ x

(
−1

2

[
x+

1

λ

])
dx

=
1

4

∫ 1

0

1

λ2
− x2 dx

=
1

4

[
1

λ2
− 1

3

]
=

1

4λ2
− 1

12
.

(147)

Thus

47

12
=

1

4λ2
− 1

12
=⇒ 4 =

1

4λ2
=⇒ λ2 =

1

16
=⇒ λ = ±1

4
. (148)

This gives two candidate local minimizers. Observe

J

(
−1

2
[x± 4]

)
=

∫ 1

0

−1

2
[x± 4] dx = −1

4
∓ 2. (149)

Consequently, we conclude y = −1

2
[x+ 4] is the local minimizer. �

Remark 28: If you were to do the previous problem with an augmented Lagrangian, you’d have

L∗ = y + λ(y2 + xy). Then

0 = Ly −
d

dx
[Ly′ ] = 1 + λ(2y + x) =⇒ y = −1

2

[
x+

1

λ

]
. (150)

�
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Convexity

Definition: Let V be a vector space. We say a functional J : V → R is convex provided for each

y1, y2 ∈ V and t ∈ (0, 1) we have

J(ty1 + (1− t)y1) ≤ tJ(y1) + (1− t)J(y2). (151)

4

Remark 29: Note the above definition is quite general. This same definition can be applied to the

special case of a function mapping f : R→ R. �

Example 34: Suppose f : R → R is continuous and convex and define J : C[0, 1] → R by

J(y) :=

∫ 1

0

f(y(x)) dx. Show J is convex.4

Solution:

Let y1, y2 ∈ C[0, 1] and t ∈ (0, 1). Then observe the convexity of f implies

J (ty1 + (1− t)y2) =

∫ 1

0

f (ty1 + (1− t)y2) dx

≤
∫ 1

0

tf(y1) + (1− t)f(y2) dx

= t

∫ 1

0

f(y1) dx+ (1− t)
∫ 1

0

f(y2) dx

= tJ(y1) + (1− t)J(y2).

(152)

Thus we conclude J is convex. �

Remark 30: Since functions like |x| and x2 and ex are convex, this shows

J(y) =

∫ 1

0

|x| dx, J(y) =

∫ 1

0

x2 dx, and J(y) =

∫ 1

0

ex dx (153)

are convex. �

4This example is due to Professor Leger.
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Remark 31: One result is that J is convex provided J(y+v)−J(y) ≥ δJ(y, v) for each admissible

direction v. We use this in the following example �

Example 35: Show J : C1[0, 1]→ R defined by

J(y) =
1

2

∫ b

a

ẏ2 + y2 dx (154)

is convex.

Solution:

For each y, v ∈ C1[0, 1] observe

δJ(y, v) =
d

dε
[J(y + εv)]ε=0 =

d

dε

[
1

2

∫ 1

0

(y + εv)2 + (ẏ + εv̇)2 dx

]
ε=0

=

∫ 1

0

v̇2 + v2 dx.

(155)

Then observe∫ 1

0

(y + v)2 − y2 − 2yv dx =

∫ 1

0

(
y2 + 2yv + v2

)
− y2 − 2yv dx =

∫ 1

0

v2 dx. (156)

A similar result holds, substituting ẏ and v̇ for y and v, respectively. Consequently,

J(y + v)− J(y)− δJ(y, v) =

∫ 1

0

[
(ẏ + v̇)2 + (y + v)2

]
−
[
ẏ2 + y2

]
− 2 [ẏv̇ + yv] dx

=

∫ 1

0

v̇2 + v2 dx

≥ 0.

(157)

Thus we conclude J is convex. �
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Legendre Transform

The following definition follows that on the Wikipedia page for Legendre transforms.

Definition: Let I ⊂ R be an interval and f : I → R be convex. Then the dual f ∗ is given by

f ∗(p) := max
x∈I

px− f(x). (158)

4

Example 36: Let f : R→ R be given by f(x) = αx2 for some α > 0. Find f ∗.

Solution:

Through the definition of the dual we see

f ∗(p) := max
x∈R

px− f(x) = max
x∈R

px− αx2. (159)

Differentiating, we see
d

dx

[
px− αx2

]
= p− 2αx, (160)

and so the single critical point of the expression to be maximized occurs at x = p/2α. This

point is a local maximum since f is convex; indeed,

∀ x ∈ R,
d2

dx2

[
px− αx2

]
=

d

dx
[p− 2αx] = −2α < 0. (161)

Thus

f ∗(p) = p
( p

2α

)
− α

( p

2α

)2

=
p2

4α
. (162)

�
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Example 37: Let f(x) = 5x2 + 3x. Find f ∗.

Solution:

Through the definition of the dual we see

f ∗(p) := max
x∈R

px− f(x) = max
x∈R

px− (5x2 + 3x) (163)

Differentiating, we see
d

dx

[
px− (5x2 + 3x)

]
= p− 10x− 3, (164)

and so the single critical point is x = (p− 3)/10. Consequently,

f ∗(p) = p

(
p− 3

10

)
−

(
5

(
p− 3

10

)2

− 3

(
p− 3

10

))
=

1

10

[
2p2 − 3p+ 18

]
, (165)

from which we conclude

f ∗(p) =
1

10

[
2p2 − 3p+ 18

]
. (166)

�
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Example 38: Define f : R→ R by f(x) = |x|. Find f ∗(p).

Solution:

Through the definition of the dual we see

f ∗(p) := max
x∈R

px− f(x) = max
x∈R

px− |x|. (167)

Then note

f ′(x) =

 1 if x > 0

−1 if x < 0,
(168)

which implies

d

dx
[px− f(x)] =

p− 1 if x > 0,

p+ 1 if x < 0.
(169)

Now suppose p > 1. Then the right hand side of (169) is always positive, which implies the

expression px− |x| to be maximized is strictly increasing with x. Thus for p > 1

f ∗(p) = lim
x→∞

px− f(x) = lim
x→∞

px− |x| = lim
x→∞

(p− 1)x =∞. (170)

Similarly, if p < −1, then the right hand side of (169) is always negative, thereby implying

the expression to be maximized is strictly decreasing. Whence for p < −1

f ∗(p) = lim
x→−∞

px− |x| = lim
x→−∞

−|x|(p− 1) =∞, (171)

where we note x = −|x| when x < 0. Lastly, consider the case where −1 ≤ p ≤ 1. Then

the derivative of px − f(x) is nonpositive for x > 0 and nonnegative for x < 0. Thus the

maximum occurs at x = 0, for which we see

f ∗(p) = p0− f(0) = 0− 0 = 0. (172)

Combining our results, we conclude

f ∗(p)=

0 if |p| ≤ 1,

∞ if |p| > 1.
(173)

�
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Example 39: Define f : (0,∞)→ R by f(x) = − ln(x). Find f ∗ and f ∗∗.

Solution:

By definition,

f ∗(p) = max
x∈(0,∞)

px− f(x) = max
x∈(0,∞)

px+ ln(x). (174)

Through differentiation we see

d

dx
[px+ ln(x)] = p+

1

x
, (175)

which implies the single critical point occurs at x = −1/p = −p−1. And, this corresponds

to a max since
d2

dx2
[px+ ln(x)] =

d

dx

[
p+

1

x

]
= − 1

x2
< 0. (176)

Thus

f ∗(p) = p(−p−1) + ln(−p−1) = − [1 + ln(−p)] . (177)

Since the domain of the logarithm is (0,∞), we conclude the dual is f ∗ : (−∞, 0) → R
defined by

f ∗(p) = − [1 + ln(−p)] . (178)

Now observe

f ∗∗(x) = max
p∈(−∞,0)

xp− f ∗(p) = max
p∈(−∞,0)

xp+ 1 + ln(−p). (179)

Differentiating reveals
d

dp
[xp+ 1 + ln(−p)] = x+

1

p
, (180)

which implies the single critical point is at p = −x−1. And, this is a max since

d2

dp2
[xp+ 1 + ln(−p)] =

d

dp

[
x+

1

p

]
= − 1

p2
< 0. (181)

Thus

f ∗∗(x) = x(−x−1) + 1 + ln
(
−(−x)−1

)
= −1 + 1 + ln(x−1) = − ln(x), (182)

and so f ∗∗ = f. �
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Now let L(v, x, t) be some Lagrangian. Note here we use x = x(t) instead of y = y(t) and we will

typically take v = ẋ. Then using the Legendre transform we can define a new quantity as follows.

Definition: Let L(v, x, t) be a Lagrangian. Then we define the corresponding HamiltonianH(p, x, t)

is defined by

H(p, x, t) := L∗(v, x, t) := max
v
pv − L(v, x, t). (183)

4

Remark 32: Note the function H is not a function of v. Also, there are now two uses of the term

L∗ in these notes. Earlier, we used this to describe an augmented Lagrangian; however, here we

use this to describe the dual of a Lagrangian. It may always be inferred from the context which

description is meant. �

Example 40: Consider a particle in space with its potential energy given by some function U(x).

Find the Hamiltonian for the system.

Solution:

The Lagrangian L is given by L = T − U where T = 1
2
mẋ2 is the kinetic energy. Letting

v = ẋ, we see

H = L∗ = max
v
pv − L = max

v
pv − 1

2
mv2 + U(x) = U(x) + max

v
pv − 1

2
mv2. (184)

Referring to Example 36, we may take α = 1
2
m to deduce

H = U(x) +
p2

4(1
2
m)

= U(x) +
p2

2m
. (185)

�

Some useful relations are that

p = Lẋ and ṗ = Lx. (186)

Then Hamilton’s equations of motion are given by

Hx = −ṗ and Hp = ẋ. (187)
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Remark 33: A curious property of the Hamiltonian should be noted. When a system follows

Hamilton’s equations of motion, we see the Hamiltonian is conserved when it does not explicitly

depend on time. Indeed, observe

Ḣ = Hxẋ+Hpṗ+Ht = HxHp +Hp(−Hx) +Ht = Ht. (188)

So, if t is not explicitly given in H, then Ḣ = 0. In many classical mechanics problems, we may

verify the Hamiltonian equals the total energy and thus deduce energy is conserved when H does

not depend on t. �

Example 41: The potential for an anharmonic oscillator is U = kx2/2 + bx4/4 where k and b are

constants. Find Hamilton’s equations of motion.

Solution:

The Lagrangian L for this system is given by

L = T − U =
1

2
mẋ2 − kx

2

2
− bx

4

4
.

This implies the momentum is given by

p = Lẋ = mẋ

so that the Hamiltonian H is

H = pẋ− L= mẋ2 −
[

1

2
mẋ2 − kx

2

2
− bx

4

4

]
=

1

2
mẋ2 + k

x2

2
+ b

x4

4
=

p2

2m
+ k

x2

2
+ b

x4

4
.

Consequently, Hamilton’s equations of motion are

ẋ =
∂H

∂p
=
px
m

and ṗx = −∂H
∂x

= −kx− bx3.

�
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Midterm II Material

The second midterm will include the following material:

i) Finding local minima without constraints

ii) Finding local minima with constraints

iii) Finding admissible directions/variations

iv) Showing a simple function/functional is convex

Remark 34: As mentioned earlier, it may be useful to refer to these notes for discussion about

boundary conditions (e.g., see the list of cases on page 138). �
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Problems for Students

Remark 35: Below we provide a few problems for students to try and rewrite in min-max form.

�
Example 42: Rewrite the constrained optimization problem

min
y∈C1[0,2]

1

2

∫ 2

0

y2 + (y′)2 dx s.t.

∫ 1

0

y dx = 12 (189)

as an unconstrained min-max problem. Then find a solution to the problem.

Example 43: Rewrite the constrained optimization problem

min
y∈C2[0,2]

1

2

∫ 2

0

y2 + 2yy′ + (y′)2 dx s.t. y′′(x)− y′(x) = 5x ∀ x ∈ [0, 1] (190)

as an unconstrained min-max problem.

Example 44: Rewrite the constrained optimization problem

min
y∈C[0,2]

y(0)2 − 3y(0) + 7 s.t.

∫ 1

0

y′ dx = 0. (191)

as an unconstrained min-max problem.

Example 45: Rewrite the constrained optimization problem

min
y∈C1[0,2]

∫ 2

0

(y − 2)2 + (y − 4)2 dx s.t. y′(x) = 1 ∀ x ∈ [0, 2]. (192)

as an unconstrained min-max problem. Also find the minimizer and the minimum for the constrai-

ned problem.
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Example 46: Rewrite the constrained optimization problem

min
y∈C1[0,2]

∫ 2

0

(y − 2)2 + (y − 4)2 dx s.t. y′(x) = 1 ∀ x ∈ [0, 2]. (193)

as an unconstrained min-max problem. Also find the minimizer and the minimum for the constrai-

ned problem.

Example 47: Find all solutions to the minimization problem

min
y∈C[0,1]

∫ 1

0

sin(y(x)) dx s.t.

∫ 1

0

y′ dx = 0. (194)

Since we have not yet covered how to handle natural boundary conditions, in each of the examples

below you can simply find δJ(y, v) for appropriate v. At a later date, we can return and try to fully

tackle these problems.

Example 48: Find the extremals for J : C1([0, 1])→ R defined by

J(y) :=

∫ 1

0

(y′)2 + y2 dx, (195)

taking y(0) = 2 and y(1) to be free.

Example 49: Find the extremals forJ : C1([0, 4])→ R defined by

J(y) :=

∫ 4

0

e2x
[
(y′)2 − y2

]
dx (196)

taking y(0) = 1 and y(4) to be free.
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Example 50: Find the extremals for J : C([0, 1])→ R defined by

J(y) := y(1)2. (197)

(Here y(1) does denote the function y evaluated at 1.)

Example 51: Find the extremals for J : C([0, 1])→ R defined by

J(y) :=

∫ 1

0

4y dx. (198)

Example 52: Use the limit definition of the Gâtuex derivative to compute δJ(y, v) where

J : C([a, b])→ R is defined by

J(y) :=

∫ b

a

y2 − 6y dx. (199)

Example 53: Suppose f : R→ R and g : R→ R are convex. Assume g is nondecreasing. Show

the composition f ◦ g is convex.

Example 54: Show the functional J : C[0, 1]→ R defined by

J(y) :=

∫ b

a

ey
2

dx (200)

is convex.

Hint: Use the result of the previous example.
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